Apa itu Gen AI?
Kecerdasan buatan generatif, juga dikenal sebagai AI generatif atau disingkat gen AI, adalah jenis AI yang dapat menciptakan konten dan ide baru, termasuk percakapan, cerita, gambar, video, dan musik. Ia dapat mempelajari bahasa manusia, bahasa pemrograman, seni, kimia, biologi, atau materi pelajaran yang kompleks. Ia menggunakan kembali apa yang diketahuinya untuk memecahkan masalah baru.
Misalnya, AI generatif dapat mempelajari kosakata bahasa Inggris dan membuat puisi dari kata-kata yang diprosesnya.
Organisasi Anda dapat menggunakan AI generatif untuk berbagai tujuan, seperti chatbot, pembuatan media, pengembangan produk, dan desain.
Contoh AI generatif
AI generatif memiliki beberapa kasus penggunaan di seluruh industri
Layanan keuangan
Perusahaan jasa keuangan menggunakan alat bantu AI generatif untuk melayani pelanggan mereka dengan lebih baik sekaligus mengurangi biaya:
- Lembaga keuangan menggunakan chatbot untuk menghasilkan rekomendasi produk dan menanggapi pertanyaan pelanggan, yang meningkatkan layanan pelanggan secara keseluruhan.
- Lembaga pemberi pinjaman mempercepat persetujuan pinjaman untuk pasar yang kurang terlayani secara finansial, terutama di negara-negara berkembang.
- Bank dengan cepat mendeteksi penipuan dalam klaim, kartu kredit, dan pinjaman.
- Perusahaan investasi menggunakan keunggulan AI generatif untuk memberikan saran keuangan yang aman dan dipersonalisasi kepada klien mereka dengan biaya rendah.
Baca selengkapnya mengenai AI Generatif dalam Layanan Keuangan di AWS
Layanan kesehatan dan ilmu kehidupan
Salah satu kasus penggunaan AI generatif yang paling menjanjikan adalah mempercepat penemuan dan penelitian obat. AI generatif dapat membuat urutan protein baru dengan sifat tertentu untuk merancang antibodi, enzim, vaksin, dan terapi gen.
Perusahaan-perusahaan perawatan kesehatan dan ilmu hayati menggunakan alat bantu AI generatif untuk mendesain sekuens gen sintetis untuk aplikasi biologi sintetis dan rekayasa metabolik. Misalnya, mereka dapat membuat jalur biosintetik baru atau mengoptimalkan ekspresi gen untuk tujuan biomanufaktur.
Alat AI generatif juga membuat data pasien dan layanan kesehatan sintetis. Data ini dapat berguna untuk melatih model AI, mensimulasikan uji klinis, atau mempelajari penyakit langka tanpa akses ke set data dunia nyata yang besar.
Baca selengkapnya tentang AI Generatif dalam Layanan Kesehatan & Ilmu Hayati di AWS
Otomotif dan Manufaktur
Perusahaan otomotif menggunakan teknologi AI generatif untuk berbagai tujuan, mulai dari teknik hingga pengalaman di dalam kendaraan dan layanan pelanggan. Sebagai contoh, mereka mengoptimalkan desain komponen mekanis untuk mengurangi hambatan dalam desain kendaraan atau mengadaptasi desain asisten pribadi.
Perusahaan otomotif menggunakan alat bantu AI generatif untuk memberikan layanan pelanggan yang lebih baik dengan memberikan respons cepat terhadap pertanyaan pelanggan yang paling umum. AI generatif menciptakan bahan, chip, dan desain bagian baru untuk mengoptimalkan proses manufaktur dan mengurangi biaya.
Kasus penggunaan AI generatif lainnya adalah mensintesis data untuk menguji aplikasi. Hal ini sangat membantu untuk data yang jarang disertakan dalam set data pengujian (seperti cacat atau kasus edge).
Baca selengkapnya tentang AI Generatif untuk Otomotif di AWS
Telekomunikasi
Kasus penggunaan AI generatif dalam telekomunikasi berfokus pada penemuan kembali pengalaman pelanggan yang ditentukan oleh interaksi kumulatif pelanggan di semua titik kontak perjalanan pelanggan.
Misalnya, organisasi telekomunikasi dapat menerapkan AI generatif untuk meningkatkan layanan pelanggan dengan agen percakapan seperti manusia secara langsung. Mereka menciptakan kembali hubungan pelanggan dengan asisten penjualan yang dipersonalisasi. Mereka juga mengoptimalkan performa jaringan dengan menganalisis data jaringan untuk merekomendasikan perbaikan.
Baca selengkapnya tentang AI Generatif untuk Telekomunikasi di AWS
Media dan hiburan
Dari animasi dan skrip hingga film berdurasi penuh, model AI generatif dapat menghasilkan konten baru dengan biaya dan waktu yang lebih sedikit dibandingkan produksi tradisional.
Kasus penggunaan AI generatif lainnya di industri ini meliputi:
- Artis dapat menambahkan dan meningkatkan album mereka dengan musik yang dihasilkan AI untuk menciptakan pengalaman baru.
- Organisasi media menggunakan AI generatif untuk meningkatkan pengalaman audiens mereka dengan menawarkan konten dan iklan yang dipersonalisasi untuk meningkatkan pendapatan.
- Perusahaan game menggunakan AI generatif untuk membuat game baru dan memungkinkan pemain membangun avatar.
Manfaat AI generatif
Menurut Goldman Sachs, AI generatif dapat mendorong peningkatan produk domestik bruto (PDB) global sebesar 7 persen (atau hampir 7 triliun dolar AS) dan meningkatkan pertumbuhan produktivitas sebesar 1,5 poin persentase dalam waktu sepuluh tahun. Selanjutnya, kami akan memaparkan beberapa manfaat AI generatif lainnya.
Bagaimana teknologi AI generatif berkembang?
Model generatif primitif telah digunakan selama beberapa dekade dalam statistik untuk membantu analisis data numerik. Jaringan neural dan deep learning adalah prekursor terbaru untuk AI generatif modern. Enkoder otomatis variasional yang dikembangkan pada tahun 2013 adalah model generatif mendalam pertama yang dapat menghasilkan gambar dan ucapan yang realistis.
VAE
VAE (variational autoencoders) memperkenalkan kemampuan untuk membuat variasi baru dari beberapa tipe data. Hal ini memicu pesatnya kemunculan model AI generatif lainnya, seperti generative adversarial network (GAN) dan model difusi. Inovasi ini difokuskan pada penghasilan data yang makin menyerupai data nyata, meskipun dibuat secara artifisial.
Transformator
Pada tahun 2017, pergeseran lebih lanjut dalam penelitian AI terjadi dengan diperkenalkannya transformator. Transformator mengintegrasikan arsitektur enkoder dan dekoder secara lancar dengan mekanisme perhatian. Mereka menyederhanakan proses pelatihan model bahasa dengan efisiensi dan keserbagunaan yang luar biasa. Model-model terkenal seperti GPT muncul sebagai model fondasi yang mampu melakukan prapelatihan pada kumpulan teks mentah yang ekstensif dan menyempurnakan tugas yang beragam.
Transformator mengubah apa yang mungkin dilakukan dalam pemrosesan bahasa alami. Transformator memberdayakan kemampuan generatif untuk tugas-tugas mulai dari menerjemahkan dan meringkas hingga menjawab pertanyaan.
Masa depan
Banyak model AI generatif terus membuat langkah signifikan dan berhasil menemukan aplikasi lintas industri. Inovasi terbaru berfokus pada penyempurnaan model untuk bekerja dengan data eksklusif. Para peneliti juga ingin membuat teks, gambar, video, dan ucapan yang makin mirip manusia.
Bagaimana cara kerja AI generatif?
Seperti kecerdasan buatan lainnya, AI generatif berjalan dengan menggunakan model machine learning—yaitu model sangat besar yang telah dilatih dengan banyak data.
Model fondasi
Model fondasi (FM) adalah model machine learning yang dilatih menggunakan berbagai data umum dan tidak berlabel. Model fondasi mampu melakukan berbagai macam tugas umum.
FM adalah hasil dari kemajuan teknologi terbaru yang telah berkembang selama beberapa dekade. Secara umum, suatu FM menggunakan pola dan hubungan yang dipelajari untuk memprediksi item berikutnya secara berurutan.
Misalnya, dalam pembuatan gambar, sebuah model menganalisis gambar dan menciptakan versi yang lebih tajam dan lebih jelas dari gambar tersebut. Demikian halnya dengan teks, sebuah model memprediksi kata berikutnya dalam rangkaian teks berdasarkan kata-kata sebelumnya dan konteksnya. Lantas, FM memilih kata berikutnya menggunakan teknik distribusi probabilitas.
Model bahasa besar
Model bahasa besar (LLM) adalah salah satu kelas FM. Misalnya, model generative pre-trained transformer (GPT) dari OpenAI adalah LLM. LLM secara khusus berfokus pada tugas-tugas berbasis bahasa seperti ringkasan, pembuatan teks, klasifikasi, percakapan terbuka, dan ekstraksi informasi.
Keistimewaan LLM terletak pada kemampuannya untuk menjalankan berbagai tugas. LLM mampu melakukan hal tersebut karena memiliki banyak parameter yang memungkinkannya mempelajari konsep-konsep lanjutan.
LLM seperti GPT-3 dapat mempertimbangkan miliaran parameter dan mampu menghasilkan konten dari input yang sangat sedikit. Melalui paparan pra-pelatihan terhadap data berskala internet dalam berbagai bentuk dan beragam pola, LLM belajar menerapkan pengetahuannya dalam berbagai konteks.