Guidance for Patient Outcome Prediction on AWS
Overview
This Guidance helps life sciences customers to gain a comprehensive understanding of the patient care journey through a Patient Outcome Predictor (POP) application that applies artificial intelligence and machine learning (AI/ML) to de-identified, longitudinal patient data. POP helps to uncover unique patterns in target patients’ medical history and unleashes insights about patient outcome patterns such as disease progression to support early identification of eligible patients for treatments, data-driven care management decisions and timely interventions. Patient journey predictions that are made by the algorithm can be linked back to providers so that life sciences organization can use POP for improving their customer segmentation & targeting with deciphered real world patient journey insights to enable successful product commercialization.
How it works
These technical details feature an architecture diagram to illustrate how to effectively use this solution. The architecture diagram shows the key components and their interactions, providing an overview of the architecture's structure and functionality step-by-step.
Well-Architected Pillars
The architecture diagram above is an example of a Solution created with Well-Architected best practices in mind. To be fully Well-Architected, you should follow as many Well-Architected best practices as possible.
Related Content
A Shifting Paradigm: Deciphering Patient Journeys with the Power of AI/ML
This post demonstrates how AI/ML can be leveraged to predict patient outcomes and improve the effectiveness of care delivery.
Disclaimer
The sample code; software libraries; command line tools; proofs of concept; templates; or other related technology (including any of the foregoing that are provided by our personnel) is provided to you as AWS Content under the AWS Customer Agreement, or the relevant written agreement between you and AWS (whichever applies). You should not use this AWS Content in your production accounts, or on production or other critical data. You are responsible for testing, securing, and optimizing the AWS Content, such as sample code, as appropriate for production grade use based on your specific quality control practices and standards. Deploying AWS Content may incur AWS charges for creating or using AWS chargeable resources, such as running Amazon EC2 instances or using Amazon S3 storage.
Did you find what you were looking for today?
Let us know so we can improve the quality of the content on our pages