AWS News Blog

Julien Simon

Author: Julien Simon

As an Artificial Intelligence & Machine Learning Evangelist for EMEA, Julien focuses on helping developers and enterprises bring their ideas to life.

Now available in Amazon Transcribe: Automatic Redaction of Personally Identifiable Information

Launched at AWS re:Invent 2017, Amazon Transcribe is an automatic speech recognition (ASR) service that makes it easy for AWS customers to add speech-to-text capabilities to their applications. At the time of writing, Transcribe supports 31 languages, 6 of which can be transcribed in real-time. A popular use case for Transcribe is the automatic transcription of […]

Read More

EC2 Price Reduction in the São Paulo Region (R5 and I3)

I’ve got good news for AWS customers using our South America (São Paulo) Region! Effective February 1, 2020 we are reducing prices for On-Demand, Reserved and Dedicated Instances as follows: All R5 families (R5, R5a, R5d, R5ad) – Up to 25%. All I3 families (I3, I3en) – 13%. The pricing pages have been updated. Questions? […]

Read More

Update on Amazon Linux AMI end-of-life

Launched in September 2010, the Amazon Linux AMI has helped numerous customers build Linux-based applications on Amazon Elastic Compute Cloud (EC2). In order to bring them even more security, stability, and productivity, we introduced Amazon Linux 2 in 2017. Adding many modern features, Amazon Linux 2 is backed by long-term support, and we strongly encourage […]

Read More

Amazon SageMaker Studio: The First Fully Integrated Development Environment For Machine Learning

Today, we’re extremely happy to launch Amazon SageMaker Studio, the first fully integrated development environment (IDE) for machine learning (ML). We have come a long way since we launched Amazon SageMaker in 2017, and it is shown in the growing number of customers using the service. However, the ML development workflow is still very iterative, […]

Read More

Amazon SageMaker Debugger – Debug Your Machine Learning Models

Today, we’re extremely happy to announce Amazon SageMaker Debugger, a new capability of Amazon SageMaker that automatically identifies complex issues developing in machine learning (ML) training jobs. Building and training ML models is a mix of science and craft (some would even say witchcraft). From collecting and preparing data sets to experimenting with different algorithms […]

Read More

Amazon SageMaker Model Monitor – Fully Managed Automatic Monitoring For Your Machine Learning Models

Today, we’re extremely happy to announce Amazon SageMaker Model Monitor, a new capability of Amazon SageMaker that automatically monitors machine learning (ML) models in production, and alerts you when data quality issues appear. The first thing I learned when I started working with data is that there is no such thing as paying too much […]

Read More

Amazon SageMaker Processing – Fully Managed Data Processing and Model Evaluation

Today, we’re extremely happy to launch Amazon SageMaker Processing, a new capability of Amazon SageMaker that lets you easily run your preprocessing, postprocessing and model evaluation workloads on fully managed infrastructure. Training an accurate machine learning (ML) model requires many different steps, but none is potentially more important than preprocessing your data set, e.g.: Converting […]

Read More

Amazon SageMaker Autopilot – Automatically Create High-Quality Machine Learning Models With Full Control And Visibility

Today, we’re extremely happy to launch Amazon SageMaker Autopilot to automatically create the best classification and regression machine learning models, while allowing full control and visibility. In 1959, Arthur Samuel defined machine learning as the ability for computers to learn without being explicitly programmed. In practice, this means finding an algorithm than can extract patterns […]

Read More

Amazon SageMaker Experiments – Organize, Track And Compare Your Machine Learning Trainings

Today, we’re extremely happy to announce Amazon SageMaker Experiments, a new capability of Amazon SageMaker that lets you organize, track, compare and evaluate machine learning (ML) experiments and model versions. ML is a highly iterative process. During the course of a single project, data scientists and ML engineers routinely train thousands of different models in […]

Read More

Now Available on Amazon SageMaker: The Deep Graph Library

Today, we’re happy to announce that the Deep Graph Library, an open source library built for easy implementation of graph neural networks, is now available on Amazon SageMaker. In recent years, Deep learning has taken the world by storm thanks to its uncanny ability to extract elaborate patterns from complex data, such as free-form text, […]

Read More