AWS News Blog

Category: SageMaker

New – Label 3D Point Clouds with Amazon SageMaker Ground Truth

Launched at AWS re:Invent 2018, Amazon Sagemaker Ground Truth is a capability of Amazon SageMaker that makes it easy to annotate machine learning datasets. Customers can efficiently and accurately label image and text data with built-in workflows, or any other type of data with custom workflows. Data samples are automatically distributed to a workforce (private, […]

Read More

Amazon SageMaker Studio: The First Fully Integrated Development Environment For Machine Learning

Today, we’re extremely happy to launch Amazon SageMaker Studio, the first fully integrated development environment (IDE) for machine learning (ML). We have come a long way since we launched Amazon SageMaker in 2017, and it is shown in the growing number of customers using the service. However, the ML development workflow is still very iterative, […]

Read More

Amazon SageMaker Debugger – Debug Your Machine Learning Models

Today, we’re extremely happy to announce Amazon SageMaker Debugger, a new capability of Amazon SageMaker that automatically identifies complex issues developing in machine learning (ML) training jobs. Building and training ML models is a mix of science and craft (some would even say witchcraft). From collecting and preparing data sets to experimenting with different algorithms […]

Read More

Amazon SageMaker Model Monitor – Fully Managed Automatic Monitoring For Your Machine Learning Models

Today, we’re extremely happy to announce Amazon SageMaker Model Monitor, a new capability of Amazon SageMaker that automatically monitors machine learning (ML) models in production, and alerts you when data quality issues appear. The first thing I learned when I started working with data is that there is no such thing as paying too much […]

Read More

Amazon SageMaker Processing – Fully Managed Data Processing and Model Evaluation

Today, we’re extremely happy to launch Amazon SageMaker Processing, a new capability of Amazon SageMaker that lets you easily run your preprocessing, postprocessing and model evaluation workloads on fully managed infrastructure. Training an accurate machine learning (ML) model requires many different steps, but none is potentially more important than preprocessing your data set, e.g.: Converting […]

Read More

Amazon SageMaker Autopilot – Automatically Create High-Quality Machine Learning Models With Full Control And Visibility

Today, we’re extremely happy to launch Amazon SageMaker Autopilot to automatically create the best classification and regression machine learning models, while allowing full control and visibility. In 1959, Arthur Samuel defined machine learning as the ability for computers to learn without being explicitly programmed. In practice, this means finding an algorithm than can extract patterns […]

Read More

Amazon SageMaker Experiments – Organize, Track And Compare Your Machine Learning Trainings

Today, we’re extremely happy to announce Amazon SageMaker Experiments, a new capability of Amazon SageMaker that lets you organize, track, compare and evaluate machine learning (ML) experiments and model versions. ML is a highly iterative process. During the course of a single project, data scientists and ML engineers routinely train thousands of different models in […]

Read More

Now Available on Amazon SageMaker: The Deep Graph Library

Today, we’re happy to announce that the Deep Graph Library, an open source library built for easy implementation of graph neural networks, is now available on Amazon SageMaker. In recent years, Deep learning has taken the world by storm thanks to its uncanny ability to extract elaborate patterns from complex data, such as free-form text, […]

Read More

New for Amazon Aurora – Use Machine Learning Directly From Your Databases

March 23, 2020: Post updated to clarify networking, IAM permissions, and database configurations required to use machine learning from Aurora databases. A new notebook using SageMaker Autopilot gives a complete example, from the set up of the model to the creation of the SQL function using the endpoint. The integrations described in this post are now available for MySQL and […]

Read More

Now available in Amazon SageMaker: EC2 P3dn GPU Instances

In recent years, the meteoric rise of deep learning has made incredible applications possible, such as detecting skin cancer (SkinVision) and building autonomous vehicles (TuSimple). Thanks to neural networks, deep learning indeed has the uncanny ability to extract and model intricate patterns from vast amounts of unstructured data (e.g. images, video, and free-form text). However, […]

Read More