AWS Machine Learning Blog
Integrate generative AI capabilities into Microsoft Office using Amazon Bedrock
In this blog post, we showcase a powerful solution that seamlessly integrates AWS generative AI capabilities in the form of large language models (LLMs) based on Amazon Bedrock into the Office experience. By harnessing the latest advancements in generative AI, we empower employees to unlock new levels of efficiency and creativity within the tools they already use every day.
From innovation to impact: How AWS and NVIDIA enable real-world generative AI success
In this post, I will share some of these customers’ remarkable journeys, offering practical insights for any organization looking to harness the power of generative AI.
Amazon Q Business now available in Europe (Ireland) AWS Region
Today, we are excited to announce that Amazon Q Business—a fully managed generative-AI powered assistant that you can configure to answer questions, provide summaries and generate content based on your enterprise data—is now generally available in the Europe (Ireland) AWS Region.
Running NVIDIA NeMo 2.0 Framework on Amazon SageMaker HyperPod
In this blog post, we explore how to integrate NeMo 2.0 with SageMaker HyperPod to enable efficient training of large language models (LLMs). We cover the setup process and provide a step-by-step guide to running a NeMo job on a SageMaker HyperPod cluster.
NeMo Retriever Llama 3.2 text embedding and reranking NVIDIA NIM microservices now available in Amazon SageMaker JumpStart
Today, we are excited to announce that the NeMo Retriever Llama3.2 Text Embedding and Reranking NVIDIA NIM microservices are available in Amazon SageMaker JumpStart. With this launch, you can now deploy NVIDIA’s optimized reranking and embedding models to build, experiment, and responsibly scale your generative AI ideas on AWS. In this post, we demonstrate how to get started with these models on SageMaker JumpStart.
Amazon Bedrock Guardrails announces IAM Policy-based enforcement to deliver safe AI interactions
Today, we’re announcing a significant enhancement to Amazon Bedrock Guardrails: AWS Identity and Access Management (IAM) policy-based enforcement. This powerful capability enables security and compliance teams to establish mandatory guardrails for every model inference call, making sure organizational safety policies are consistently enforced across AI interactions. This feature enhances AI governance by enabling centralized control over guardrail implementation.
Build your gen AI–based text-to-SQL application using RAG, powered by Amazon Bedrock (Claude 3 Sonnet and Amazon Titan for embedding)
In this post, we explore using Amazon Bedrock to create a text-to-SQL application using RAG. We use Anthropic’s Claude 3.5 Sonnet model to generate SQL queries, Amazon Titan in Amazon Bedrock for text embedding and Amazon Bedrock to access these models.
Unleash AI innovation with Amazon SageMaker HyperPod
In this post, we show how SageMaker HyperPod, and its new features introduced at AWS re:Invent 2024, is designed to meet the demands of modern AI workloads, offering a persistent and optimized cluster tailored for distributed training and accelerated inference at cloud scale and attractive price-performance.
Revolutionizing clinical trials with the power of voice and AI
As the healthcare industry continues to embrace digital transformation, solutions that combine advanced technologies like audio-to-text translation and LLMs will become increasingly valuable in addressing key challenges, such as patient education, engagement, and empowerment. In this post, we discuss possible use cases for combining speech recognition technology with LLMs, and how the solution can revolutionize clinical trials.
Intelligent healthcare assistants: Empowering stakeholders with personalized support and data-driven insights
Healthcare decisions often require integrating information from multiple sources, such as medical literature, clinical databases, and patient records. LLMs lack the ability to seamlessly access and synthesize data from these diverse and distributed sources. This limits their potential to provide comprehensive and well-informed insights for healthcare applications. In this blog post, we will explore how Mistral LLM on Amazon Bedrock can address these challenges and enable the development of intelligent healthcare agents with LLM function calling capabilities, while maintaining robust data security and privacy through Amazon Bedrock Guardrails.