AWS Machine Learning Blog

Category: Learning Levels

Solution overview

Detect population variance of endangered species using Amazon Rekognition

Our planet faces a global extinction crisis. UN Report shows a staggering number of more than a million species feared to be on the path of extinction. The most common reasons for extinction include loss of habitat, poaching, and invasive species. Several wildlife conservation foundations, research scientists, volunteers, and anti-poaching rangers have been working tirelessly […]

Read More

How Amazon Search reduced ML inference costs by 85% with AWS Inferentia

Amazon’s product search engine indexes billions of products, serves hundreds of millions of customers worldwide, and is one of the most heavily used services in the world. The Amazon Search team develops machine learning (ML) technology that powers the Amazon.com search engine and helps customers search effortlessly. To deliver a great customer experience and operate […]

Read More

Amazon Comprehend Targeted Sentiment adds synchronous support

Earlier this year, Amazon Comprehend, a natural language processing (NLP) service that uses machine learning (ML) to discover insights from text, launched the Targeted Sentiment feature. With Targeted Sentiment, you can identify groups of mentions (co-reference groups) corresponding to a single real-world entity or attribute, provide the sentiment associated with each entity mention, and offer […]

Read More

Use RStudio on Amazon SageMaker to create regulatory submissions for the life sciences industry

Pharmaceutical companies seeking approval from regulatory agencies such as the US Food & Drug Administration (FDA) or Japanese Pharmaceuticals and Medical Devices Agency (PMDA) to sell their drugs on the market must submit evidence to prove that their drug is safe and effective for its intended use. A team of physicians, statisticians, chemists, pharmacologists, and […]

Read More

Prepare data at scale in Amazon SageMaker Studio using serverless AWS Glue interactive sessions

Amazon SageMaker Studio is the first fully integrated development environment (IDE) for machine learning (ML). It provides a single, web-based visual interface where you can perform all ML development steps, including preparing data and building, training, and deploying models. AWS Glue is a serverless data integration service that makes it easy to discover, prepare, and […]

Read More

Tips to improve your Amazon Rekognition Custom Labels model

In this post, we discuss best practices to improve the performance of your computer vision models using Amazon Rekognition Custom Labels. Rekognition Custom Labels is a fully managed service to build custom computer vision models for image classification and object detection use cases. Rekognition Custom Labels builds off of the pre-trained models in Amazon Rekognition, which […]

Read More

Improve transcription accuracy of customer-agent calls with custom vocabulary in Amazon Transcribe

Many AWS customers have been successfully using Amazon Transcribe to accurately, efficiently, and automatically convert their customer audio conversations to text, and extract actionable insights from them. These insights can help you continuously enhance the processes and products that directly improve the quality and experience for your customers. In many countries, such as India, English […]

Read More

Distributed training with Amazon EKS and Torch Distributed Elastic

Distributed deep learning model training is becoming increasingly important as data sizes are growing in many industries. Many applications in computer vision and natural language processing now require training of deep learning models, which are growing exponentially in complexity and are often trained with hundreds of terabytes of data. It then becomes important to use […]

Read More

Create a batch recommendation pipeline using Amazon Personalize with no code

With personalized content more likely to drive customer engagement, businesses continuously seek to provide tailored content based on their customer’s profile and behavior. Recommendation systems in particular seek to predict the preference an end-user would give to an item. Some common use cases include product recommendations on online retail stores, personalizing newsletters, generating music playlist […]

Read More
Image shows a high-level solution architecture for the phases of intelligent document processing (IDP) as it relates to the stages of a mortgage application.

Process mortgage documents with intelligent document processing using Amazon Textract and Amazon Comprehend

Organizations in the lending and mortgage industry process thousands of documents on a daily basis. From a new mortgage application to mortgage refinance, these business processes involve hundreds of documents per application. There is limited automation available today to process and extract information from all the documents, especially due to varying formats and layouts. Due […]

Read More