AWS Machine Learning Blog

Category: Learning Levels

Metadata filtering for tabular data with Knowledge Bases for Amazon Bedrock

Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading artificial intelligence (AI) companies like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API. To equip FMs with up-to-date and proprietary information, organizations use Retrieval Augmented Generation (RAG), a technique that […]

Overview of the QSI solution

Derive meaningful and actionable operational insights from AWS Using Amazon Q Business

As a customer, you rely on Amazon Web Services (AWS) expertise to be available and understand your specific environment and operations. Today, you might implement manual processes to summarize lessons learned, obtain recommendations, or expedite the resolution of an incident. This can be time consuming, inconsistent, and not readily accessible. This post shows how to […]

Governing the ML lifecycle at scale, Part 2: Multi-account foundations

Your multi-account strategy is the core of your foundational environment on AWS. Design decisions around your multi-account environment are critical for operating securely at scale. Grouping your workloads strategically into multiple AWS accounts enables you to apply different controls across workloads, track cost and usage, reduce the impact of account limits, and mitigate the complexity […]

Video auto-dubbing using Amazon Translate, Amazon Bedrock, and Amazon Polly

This post is co-written with MagellanTV and Mission Cloud.  Video dubbing, or content localization, is the process of replacing the original spoken language in a video with another language while synchronizing audio and video. Video dubbing has emerged as a key tool in breaking down linguistic barriers, enhancing viewer engagement, and expanding market reach. However, […]

Geospatial notebook

Create custom images for geospatial analysis with Amazon SageMaker Distribution in Amazon SageMaker Studio

This post shows you how to extend Amazon SageMaker Distribution with additional dependencies to create a custom container image tailored for geospatial analysis. Although the example in this post focuses on geospatial data science, the methodology presented can be applied to any kind of custom image based on SageMaker Distribution.

Automating model customization in Amazon Bedrock with AWS Step Functions workflow

Large language models have become indispensable in generating intelligent and nuanced responses across a wide variety of business use cases. However, enterprises often have unique data and use cases that require customizing large language models beyond their out-of-the-box capabilities. Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) […]

Fine-tune Anthropic’s Claude 3 Haiku in Amazon Bedrock to boost model accuracy and quality

Frontier large language models (LLMs) like Anthropic Claude on Amazon Bedrock are trained on vast amounts of data, allowing Anthropic Claude to understand and generate human-like text. Fine-tuning Anthropic Claude 3 Haiku on proprietary datasets can provide optimal performance on specific domains or tasks. The fine-tuning as a deep level of customization represents a key […]

Generate unique images by fine-tuning Stable Diffusion XL with Amazon SageMaker

Stable Diffusion XL by Stability AI is a high-quality text-to-image deep learning model that allows you to generate professional-looking images in various styles. Managed versions of Stable Diffusion XL are already available to you on Amazon SageMaker JumpStart (see Use Stable Diffusion XL with Amazon SageMaker JumpStart in Amazon SageMaker Studio) and Amazon Bedrock (see […]

Build your multilingual personal calendar assistant with Amazon Bedrock and AWS Step Functions

This post shows you how to apply AWS services such as Amazon Bedrock, AWS Step Functions, and Amazon Simple Email Service (Amazon SES) to build a fully-automated multilingual calendar artificial intelligence (AI) assistant. It understands the incoming messages, translates them to the preferred language, and automatically sets up calendar reminders.