AWS Machine Learning Blog

Category: Learning Levels

Improving Content Moderation with Amazon Rekognition Bulk Analysis and Custom Moderation

Amazon Rekognition makes it easy to add image and video analysis to your applications. It’s based on the same proven, highly scalable, deep learning technology developed by Amazon’s computer vision scientists to analyze billions of images and videos daily. It requires no machine learning (ML) expertise to use and we’re continually adding new computer vision […]

Analytics model

Understanding and predicting urban heat islands at Gramener using Amazon SageMaker geospatial capabilities

This is a guest post co-authored by Shravan Kumar and Avirat S from Gramener. Gramener, a Straive company, contributes to sustainable development by focusing on agriculture, forestry, water management, and renewable energy. By providing authorities with the tools and insights they need to make informed decisions about environmental and social impact, Gramener is playing a […]

Build a news recommender application with Amazon Personalize

With a multitude of articles, videos, audio recordings, and other media created daily across news media companies, readers of all types—individual consumers, corporate subscribers, and more—often find it difficult to find news content that is most relevant to them. Delivering personalized news and experiences to readers can help solve this problem, and create more engaging […]

Option 2: Notebook export

Seamlessly transition between no-code and code-first machine learning with Amazon SageMaker Canvas and Amazon SageMaker Studio

Amazon SageMaker Studio is a web-based, integrated development environment (IDE) for machine learning (ML) that lets you build, train, debug, deploy, and monitor your ML models. SageMaker Studio provides all the tools you need to take your models from data preparation to experimentation to production while boosting your productivity. Amazon SageMaker Canvas is a powerful […]

Build a contextual text and image search engine for product recommendations using Amazon Bedrock and Amazon OpenSearch Serverless

In this post, we show how to build a contextual text and image search engine for product recommendations using the Amazon Titan Multimodal Embeddings model, available in Amazon Bedrock, with Amazon OpenSearch Serverless.

Gradient makes LLM benchmarking cost-effective and effortless with AWS Inferentia

This is a guest post co-written with Michael Feil at Gradient. Evaluating the performance of large language models (LLMs) is an important step of the pre-training and fine-tuning process before deployment. The faster and more frequent you’re able to validate performance, the higher the chances you’ll be able to improve the performance of the model. […]

Enable single sign-on access of Amazon SageMaker Canvas using AWS IAM Identity Center: Part 2

Amazon SageMaker Canvas allows you to use machine learning (ML) to generate predictions without having to write any code. It does so by covering the end-to-end ML workflow: whether you’re looking for powerful data preparation and AutoML, managed endpoint deployment, simplified MLOps capabilities, or the ability to configure foundation models for generative AI, SageMaker Canvas […]

Scale LLMs with PyTorch 2.0 FSDP on Amazon EKS – Part 2

This is a guest post co-written with Meta’s PyTorch team and is a continuation of Part 1 of this series, where we demonstrate the performance and ease of running PyTorch 2.0 on AWS. Machine learning (ML) research has proven that large language models (LLMs) trained with significantly large datasets result in better model quality. In […]

Provide live agent assistance for your chatbot users with Amazon Lex and Talkdesk cloud contact center

Amazon Lex provides advanced conversational artificial intelligence (AI) capabilities to enable self-service support for your organization’s contact center. With Amazon Lex, you can implement an omnichannel strategy where customers engage via phone, websites, and messaging platforms. The bots can answer FAQs, provide self-service experiences, or triage customer requests before transferring to a human agent. Amazon Lex integrates […]

Advanced RAG patterns on Amazon SageMaker

Today, customers of all industries—whether it’s financial services, healthcare and life sciences, travel and hospitality, media and entertainment, telecommunications, software as a service (SaaS), and even proprietary model providers—are using large language models (LLMs) to build applications like question and answering (QnA) chatbots, search engines, and knowledge bases. These generative AI applications are not only […]