AWS Machine Learning Blog

Category: SageMaker

Adding AI to your applications with ready-to-use models from AWS Marketplace

Machine learning (ML) lets enterprises unlock the true potential of their data, automate decisions, and transform their business processes to deliver exponential value to their customers. To help you take advantage of ML, Amazon SageMaker provides the ability to build, train, and deploy ML models quickly. Until recently, if you used Amazon SageMaker, you could […]

Read More

Custom deep reinforcement learning and multi-track training for AWS DeepRacer with Amazon SageMaker RL Notebook

AWS DeepRacer, launched at re:Invent 2018, helps developers get hands on with reinforcement learning (RL).  Since then, thousands of people have developed and raced their models at 21 AWS DeepRacer League events at AWS Summits across the world, and virtually via the AWS DeepRacer console. Beyond the summits there have been several events at AWS […]

Read More

Developing a business strategy by combining machine learning with sensitivity analysis

Machine learning (ML) is routinely used by countless businesses to assist with decision making. In most cases, however, the predictions and business decisions made by ML systems still require the intuition of human users to make judgment calls. In this post, I show how to combine ML with sensitivity analysis to develop a data-driven business […]

Read More

Optimizing portfolio value with Amazon SageMaker automatic model tuning

Financial institutions that extend credit face the dual tasks of evaluating the credit risk associated with each loan application and determining a threshold that defines the level of risk they are willing to take on. The evaluation of credit risk is a common application of machine learning (ML) classification models. The determination of a classification […]

Read More

Build, test, and deploy your Amazon Sagemaker inference models to AWS Lambda

Amazon SageMaker is a fully managed platform that enables developers and data scientists to quickly and easily build, train, and deploy machine learning (ML) models at any scale. When you deploy an ML model, Amazon SageMaker leverages ML hosting instances to host the model and provides an API endpoint to provide inferences. It may also […]

Read More

Multiregion serverless distributed training with AWS Batch and Amazon SageMaker

Creating a global footprint and access to scale are one of the many best practices at AWS. By creating architectures that take advantage of that scale and also efficient data utilization (in both performance and cost), you can start to see how important access is at scale. For example, within autonomous vehicles (AV) development, data is geographically […]

Read More

Building a deep neural net–based surrogate function for global optimization using PyTorch on Amazon SageMaker

Optimization is the process of finding the minimum (or maximum) of a function that depends on some inputs, called design variables. Customer X has the following problem: They are about to release a new car model to be designed for maximum fuel efficiency. In reality, thousands of parameters that represent tuning parameters relating to the […]

Read More

Launching TensorFlow distributed training easily with Horovod or Parameter Servers in Amazon SageMaker

Amazon SageMaker supports all the popular deep learning frameworks, including TensorFlow. Over 85% of TensorFlow projects in the cloud run on AWS. Many of these projects already run in Amazon SageMaker. This is due to the many conveniences Amazon SageMaker provides for TensorFlow model hosting and training, including fully managed distributed training with Horovod and […]

Read More

Performing batch inference with TensorFlow Serving in Amazon SageMaker

After you’ve trained and exported a TensorFlow model, you can use Amazon SageMaker to perform inferences using your model. You can either: Deploy your model to an endpoint to obtain real-time inferences from your model. Use batch transform to obtain inferences on an entire dataset stored in Amazon S3. In the case of batch transform, […]

Read More