AWS Machine Learning Blog

Category: Amazon SageMaker

How Genworth built a serverless ML pipeline on AWS using Amazon SageMaker and AWS Glue

This post is co-written with Liam Pearson, a Data Scientist at Genworth Mortgage Insurance Australia Limited. Genworth Mortgage Insurance Australia Limited is a leading provider of lenders mortgage insurance (LMI) in Australia; their shares are traded on Australian Stock Exchange as ASX: GMA. Genworth Mortgage Insurance Australia Limited is a lenders mortgage insurer with over […]

Read More

Creating an end-to-end application for orchestrating custom deep learning HPO, training, and inference using AWS Step Functions

Amazon SageMaker hyperparameter tuning provides a built-in solution for scalable training and hyperparameter optimization (HPO). However, for some applications (such as those with a preference of different HPO libraries or customized HPO features), we need custom machine learning (ML) solutions that allow retraining and HPO. This post offers a step-by-step guide to build a custom deep […]

Read More

Build a medical sentence matching application using BERT and Amazon SageMaker

Determining the relevance of a sentence when compared to a specific document is essential for many different types of applications across various industries. In this post, we focus on a use case within the healthcare field to help determine the accuracy of information regarding patient health. Frequently, during each patient visit, a new document is […]

Read More

Securing Amazon SageMaker Studio internet traffic using AWS Network Firewall

Amazon SageMaker Studio is a web-based fully integrated development environment (IDE) where you can perform end-to-end machine learning (ML) development to prepare data and build, train, and deploy models. Like other AWS services, Studio supports a rich set of security-related features that allow you to build highly secure and compliant environments. One of these fundamental […]

Read More

It’s here! Join us for Amazon SageMaker Month, 30 days of content, discussion, and news

Want to accelerate machine learning (ML) innovation in your organization? Join us for 30 days of new Amazon SageMaker content designed to help you build, train, and deploy ML models faster. On April 20, we’re kicking off 30 days of hands-on workshops, Twitch sessions, Slack chats, and partner perspectives. Our goal is to connect you […]

Read More

Estimating 3D pose for athlete tracking using 2D videos and Amazon SageMaker Studio

In preparation for the upcoming Olympic Games, Intel®, an American multinational corporation and one of the world’s largest technology companies, developed a concept around 3D Athlete Tracking (3DAT). 3DAT is a machine learning (ML) solution to create real-time digital models of athletes in competition in order to increase fan engagement during broadcasts. Intel was looking […]

Read More

Implement checkpointing with TensorFlow for Amazon SageMaker Managed Spot Training

Customers often ask us how can they lower their costs when conducting deep learning training on AWS. Training deep learning models with libraries such as TensorFlow, PyTorch, and Apache MXNet usually requires access to GPU instances, which are AWS instances types that provide access to NVIDIA GPUs with thousands of compute cores. GPU instance types […]

Read More

HawkEye 360 uses Amazon SageMaker Autopilot to streamline machine learning model development for maritime vessel risk assessment

This post is cowritten by Ian Avilez and Tim Pavlick from HawkEye 360. HawkEye 360 is a commercial radio frequency (RF) satellite constellation data analytics provider. Our signals of interest include very high frequency (VHF) push-to-talk radios, maritime radar systems, AIS beacons, satellite mobile comms, and more. Our Mission Space offering, released in February 2021, […]

Read More

Protecting people from hazardous areas through virtual boundaries with Computer Vision

As companies welcome more autonomous robots and other heavy equipment into the workplace, we need to ensure equipment can operate safely around human teammates. In this post, we will show you how to build a virtual boundary with computer vision and AWS DeepLens, the AWS deep learning-enabled video camera designed for developers to learn machine […]

Read More

Enable cross-account access for Amazon SageMaker Data Wrangler using AWS Lake Formation

Amazon SageMaker Data Wrangler is the fastest and easiest way for data scientists to prepare data for machine learning (ML) applications. With Data Wrangler, you can simplify the process of feature engineering and complete each step of the data preparation workflow, including data selection, cleansing, exploration, and visualization through a single visual interface. Data Wrangler […]

Read More