AWS Machine Learning Blog

Category: Amazon SageMaker

Illustrative notebooks in Amazon SageMaker JumpStart

Amazon SageMaker JumpStart is the Machine Learning (ML) hub of SageMaker providing pre-trained, publicly available models for a wide range of problem types to help you get started with machine learning. JumpStart also offers example notebooks that use Amazon SageMaker features like spot instance training and experiments over a large variety of model types and […]

Interactive data prep widget for notebooks powered by Amazon SageMaker Data Wrangler

According to a 2020 survey of data scientists conducted by Anaconda, data preparation is one of the critical steps in machine learning (ML) and data analytics workflows, and often very time consuming for data scientists. Data scientists spend about 66% of their time on data preparation and analysis tasks, including loading (19%), cleaning (26%), and […]

Run notebooks as batch jobs in Amazon SageMaker Studio Lab

Recently, the Amazon SageMaker Studio launched an easy way to run notebooks as batch jobs that can run on a recurring schedule. Amazon SageMaker Studio Lab also supports this feature, enabling you to run notebooks that you develop in SageMaker Studio Lab in your AWS account. This enables you to quickly scale your machine learning […]

Organize machine learning development using shared spaces in SageMaker Studio for real-time collaboration

Amazon SageMaker Studio is the first fully integrated development environment (IDE) for machine learning (ML). It provides a single, web-based visual interface where you can perform all ML development steps, including preparing data and building, training, and deploying models. Within an Amazon SageMaker Domain, users can provision a personal Amazon SageMaker Studio IDE application, which […]

Minimize the production impact of ML model updates with Amazon SageMaker shadow testing

Amazon SageMaker now allows you to compare the performance of a new version of a model serving stack with the currently deployed version prior to a full production rollout using a deployment safety practice known as shadow testing. Shadow testing can help you identify potential configuration errors and performance issues before they impact end-users. With […]

Improve governance of your machine learning models with Amazon SageMaker

As companies are increasingly adopting machine learning (ML) for their mainstream enterprise applications, more of their business decisions are influenced by ML models. As a result of this, having simplified access control and enhanced transparency across all your ML models makes it easier to validate that your models are performing well and take action when […]

Define customized permissions in minutes with Amazon SageMaker Role Manager

Administrators of machine learning (ML) workloads are focused on ensuring that users are operating in the most secure manner, striving towards a principal of least privilege design. They have a wide variety of personas to account for, each with their own unique sets of needs, and building the right sets of permissions policies to meet […]

Build an agronomic data platform with Amazon SageMaker geospatial capabilities

The world is at increasing risk of global food shortage as a consequence of geopolitical conflict, supply chain disruptions, and climate change. Simultaneously, there’s an increase in overall demand from population growth and shifting diets that focus on nutrient- and protein-rich food. To meet the excess demand, farmers need to maximize crop yield and effectively […]

Separate lines of business or teams with multiple Amazon SageMaker domains

Amazon SageMaker Studio is a fully integrated development environment (IDE) for machine learning (ML) that enables data scientists and developers to perform every step of the ML workflow, from preparing data to building, training, tuning, and deploying models. To access SageMaker Studio, Amazon SageMaker Canvas, or other Amazon ML environments like RStudio on Amazon SageMaker, […]

Operationalize your Amazon SageMaker Studio notebooks as scheduled notebook jobs

Amazon SageMaker Studio provides a fully managed solution for data scientists to interactively build, train, and deploy machine learning (ML) models. In addition to the interactive ML experience, data workers also seek solutions to run notebooks as ephemeral jobs without the need to refactor code as Python modules or learn DevOps tools and best practices […]