AWS Machine Learning Blog

Category: Customer Solutions

HawkEye 360 predicts vessel risk using the Deep Graph Library and Amazon Neptune

This post is co-written by Ian Avilez and Tim Pavlick from HawkEye 360. HawkEye 360 is a commercial radio frequency (RF) constellation, data, and analytics provider. Their signals of interest include very high frequency (VHF) push-to-talk radios, maritime radar systems, Automatic Identification System (AIS) beacons, emergency beacons, and more. The signals of interest library will […]

Read More

How NSF’s iHARP researchers are enabling active learning for polar ice analysis using Amazon SageMaker and Amazon A2I

The University of Maryland, Baltimore County’s Bina lab is a multidisciplinary research lab for employing advanced computer vision, machine learning (ML), and remote sensing techniques to discover new knowledge of our environment, especially in the Arctic and Antarctic regions. The lab’s work is supported by NSF BIGDATA awards (IIS-1947584, IIS-1838230), the NSF HDR Institute award […]

Read More

How Imperva expedites ML development and collaboration via Amazon SageMaker notebooks

This is a guest post by Imperva, a solutions provider for cybersecurity.  Imperva is a cybersecurity leader, headquartered in California, USA, whose mission is to protect data and all paths to it. In the last few years, we’ve been working on integrating machine learning (ML) into our products. This includes detecting malicious activities in databases, […]

Read More

Virtu Financial enables its customers to apply advanced analytics and machine learning on trade and market data by provisioning Amazon SageMaker

This is a guest post by Erin Stanton, who currently runs the Global Client Support organization for Virtu Analytics.  Virtu Financial is a leading provider of financial services and products that uses cutting-edge technology to deliver liquidity to the global markets and innovative, transparent trading solutions to its clients. Virtu uses its global market-making expertise […]

Read More

Ounass increases its revenue using Amazon SageMaker with a Word2vec based recommender system

Based in Dubai, Ounass is the Middle East’s leading ecommerce platform for luxury goods. Scouring the globe for leading trends, Ounass’s expert team reports on the latest fashion updates, coveted insider information, and exclusive interviews for customers to read and shop. With more than 230,000 unique catalog items spanning multiple brands and several product classes—including […]

Read More

Personalizing wellness recommendations at Calm with Amazon Personalize

This is a guest post by Shae Selix (Staff Data Scientist at Calm) and Luis Lopez Soria (Sr. AI/ML Specialist SA at AWS). Today, content is proliferating. It’s being produced in many different forms by a host of content providers, both large and small. Whether it’s on-demand video, music, podcasts, or other forms of rich […]

Read More

Arçelik hosts global AWS DeepRacer League using new LIVE feature to educate over 200 employees on machine learning

This is a guest post by Pınar Köse Kulacz, Innovation Director at Arçelik. Arçelik, the leading global manufacturer of household appliances, has collaborated with AWS since 2019 to increase efficiency and innovate on new services. Here at Arçelik, we believe that data and artificial intelligence provide a critical advantage over competitors in the global consumer […]

Read More

How Intel Olympic Technology Group built a smart coaching SaaS application by deploying pose estimation models – Part 1

The Intel Olympic Technology Group (OTG), a division within Intel focused on bringing cutting-edge technology to Olympic athletes, collaborated with AWS Machine Learning Professional Services (MLPS) to build a smart coaching software as a service (SaaS) application using computer vision (CV)-based pose estimation models. Pose estimation is a class of machine learning (ML) model that […]

Read More

Increase your machine learning success with AWS ML services and AWS Machine Learning Embark

This is a guest post from Mikael Graindorge, Sales Operations Leader at Thermo Fisher Scientific. In the life sciences industry, data is growing in abundance and is getting increasingly complex, which makes it challenging to use traditional analytics methodologies. At Thermo Fisher Scientific, our mission is to make the world healthier, cleaner, and safer, and […]

Read More

Hyundai reduces ML model training time for autonomous driving models using Amazon SageMaker

Hyundai Motor Company, headquartered in Seoul, South Korea, is one of the largest car manufacturers in the world. They have been heavily investing human and material resources in the race to develop self-driving cars, also known as autonomous vehicles. One of the algorithms often used in autonomous driving is semantic segmentation, which is a task […]

Read More