AWS Machine Learning Blog
Category: Amazon QuickSight
Generative AI-powered technology operations
In this post we describe how AWS generative AI solutions (including Amazon Bedrock, Amazon Q Developer, and Amazon Q Business) can further enhance TechOps productivity, reduce time to resolve issues, enhance customer experience, standardize operating procedures, and augment knowledge bases.
Build an automated insight extraction framework for customer feedback analysis with Amazon Bedrock and Amazon QuickSight
In this post, we explore how to integrate LLMs into enterprise applications to harness their generative capabilities. We delve into the technical aspects of workflow implementation and provide code samples that you can quickly deploy or modify to suit your specific requirements. Whether you’re a developer seeking to incorporate LLMs into your existing systems or a business owner looking to take advantage of the power of NLP, this post can serve as a quick jumpstart.
Amazon Q Business and Amazon Q in QuickSight empowers employees to be more data-driven and make better, faster decisions using company knowledge
Today, we announced the General Availability of Amazon Q, the most capable generative AI powered assistant for accelerating software development and leveraging companies’ internal data. “During the preview, early indications signaled Amazon Q could help our customers’ employees become more than 80% more productive at their jobs; and with the new features we’re planning on […]
Visualize an Amazon Comprehend analysis with a word cloud in Amazon QuickSight
Searching for insights in a repository of free-form text documents can be like finding a needle in a haystack. A traditional approach might be to use word counting or other basic analysis to parse documents, but with the power of Amazon AI and machine learning (ML) tools, we can gather deeper understanding of the content. […]
Automatically generate impressions from findings in radiology reports using generative AI on AWS
This post demonstrates a strategy for fine-tuning publicly available LLMs for the task of radiology report summarization using AWS services. LLMs have demonstrated remarkable capabilities in natural language understanding and generation, serving as foundation models that can be adapted to various domains and tasks. There are significant benefits to using a pre-trained model. It reduces computation costs, reduces carbon footprints, and allows you to use state-of-the-art models without having to train one from scratch.
Get insights on your user’s search behavior from Amazon Kendra using an ML-powered serverless stack
Amazon Kendra is a highly accurate and intelligent search service that enables users to search unstructured and structured data using natural language processing (NLP) and advanced search algorithms. With Amazon Kendra, you can find relevant answers to your questions quickly, without sifting through documents. However, just enabling end-users to get the answers to their queries […]
Publish predictive dashboards in Amazon QuickSight using ML predictions from Amazon SageMaker Canvas
April 2024: This post was reviewed and updated for accuracy. Understanding business trends, customer behavior, sales revenue, increase in demand, and buyer propensity all start with data. Exploring, analyzing, interpreting, and finding trends in data is essential for businesses to achieve successful outcomes. Business analysts play a pivotal role in facilitating data-driven business decisions through […]
Transform, analyze, and discover insights from unstructured healthcare data using Amazon HealthLake
Healthcare data is complex and siloed, and exists in various formats. An estimated 80% of data within organizations is considered to be unstructured or “dark” data that is locked inside text, emails, PDFs, and scanned documents. This data is difficult to interpret or analyze programmatically and limits how organizations can derive insights from it and […]
Deploy a predictive maintenance solution for airport baggage handling systems with Amazon Lookout for Equipment
This is a guest post co-written with Moulham Zahabi from Matarat. Probably everyone has checked their baggage when flying, and waited anxiously for their bags to appear at the carousel. Successful and timely delivery of your bags depends on a massive infrastructure called the baggage handling system (BHS). This infrastructure is one of the key […]
Accelerate the investment process with AWS Low Code-No Code services
The last few years have seen a tremendous paradigm shift in how institutional asset managers source and integrate multiple data sources into their investment process. With frequent shifts in risk correlations, unexpected sources of volatility, and increasing competition from passive strategies, asset managers are employing a broader set of third-party data sources to gain a […]