AWS Machine Learning Blog

Category: Amazon SageMaker JumpStart

Build a RAG-based QnA application using Llama3 models from SageMaker JumpStart

In this post, we provide a step-by-step guide for creating an enterprise ready RAG application such as a question answering bot. We use the Llama3-8B FM for text generation and the BGE Large EN v1.5 text embedding model for generating embeddings from Amazon SageMaker JumpStart.

Best prompting practices for using Meta Llama 3 with Amazon SageMaker JumpStart

In this post, we dive into the best practices and techniques for prompting Meta Llama 3 using Amazon SageMaker JumpStart to generate high-quality, relevant outputs. We discuss how to use system prompts and few-shot examples, and how to optimize inference parameters, so you can get the most out of Meta Llama 3.

Best practices for prompt engineering with Meta Llama 3 for Text-to-SQL use cases

Best practices for prompt engineering with Meta Llama 3 for Text-to-SQL use cases

In this post, we explore a solution that uses the vector engine ChromaDB and Meta Llama 3, a publicly available foundation model hosted on SageMaker JumpStart, for a Text-to-SQL use case. We shared a brief history of Meta Llama 3, best practices for prompt engineering with Meta Llama 3 models, and an architecture pattern using few-shot prompting and RAG to extract the relevant schemas stored as vectors in ChromaDB.

Snowflake Arctic models are now available in Amazon SageMaker JumpStart

Today, we are excited to announce that the Snowflake Arctic Instruct model is available through Amazon SageMaker JumpStart to deploy and run inference. In this post, we walk through how to discover and deploy the Snowflake Arctic Instruct model using SageMaker JumpStart, and provide example use cases with specific prompts.

Fine-tune Meta Llama 3.1 models for generative AI inference using Amazon SageMaker JumpStart

Fine-tuning Meta Llama 3.1 models with Amazon SageMaker JumpStart enables developers to customize these publicly available foundation models (FMs). The Meta Llama 3.1 collection represents a significant advancement in the field of generative artificial intelligence (AI), offering a range of capabilities to create innovative applications. The Meta Llama 3.1 models come in various sizes, with 8 billion, 70 billion, and 405 billion parameters, catering to diverse project needs. In this post, we demonstrate how to fine-tune Meta Llama 3-1 pre-trained text generation models using SageMaker JumpStart.

Cohere Rerank 3 Nimble now generally available on Amazon SageMaker JumpStart

The Cohere Rerank 3 Nimble foundation model (FM) is now generally available in Amazon SageMaker JumpStart. This model is the newest FM in Cohere’s Rerank model series, built to enhance enterprise search and Retrieval Augmented Generation (RAG) systems. In this post, we discuss the benefits and capabilities of this new model with some examples. Overview […]

Solution architecture

Monks boosts processing speed by four times for real-time diffusion AI image generation using Amazon SageMaker and AWS Inferentia2

This post is co-written with Benjamin Moody from Monks. Monks is the global, purely digital, unitary operating brand of S4Capital plc. With a legacy of innovation and specialized expertise, Monks combines an extraordinary range of global marketing and technology services to accelerate business possibilities and redefine how brands and businesses interact with the world. Its […]

Boosting Salesforce Einstein’s code generating model performance with Amazon SageMaker

This post is a joint collaboration between Salesforce and AWS and is being cross-published on both the Salesforce Engineering Blog and the AWS Machine Learning Blog. Salesforce, Inc. is an American cloud-based software company headquartered in San Francisco, California. It provides customer relationship management (CRM) software and applications focused on sales, customer service, marketing automation, […]

Use Llama 3.1 405B for synthetic data generation and distillation to fine-tune smaller models

Today, we are excited to announce the availability of the Llama 3.1 405B model on Amazon SageMaker JumpStart, and Amazon Bedrock in preview. The Llama 3.1 models are a collection of state-of-the-art pre-trained and instruct fine-tuned generative artificial intelligence (AI) models in 8B, 70B, and 405B sizes. Amazon SageMaker JumpStart is a machine learning (ML) hub that provides access to algorithms, models, and ML solutions so you can quickly get started with ML. Amazon Bedrock offers a straightforward way to build and scale generative AI applications with Meta Llama models, using a single API.