AWS Machine Learning Blog

Category: Intermediate (200)

Governing the ML lifecycle at scale, Part 2: Multi-account foundations

Your multi-account strategy is the core of your foundational environment on AWS. Design decisions around your multi-account environment are critical for operating securely at scale. Grouping your workloads strategically into multiple AWS accounts enables you to apply different controls across workloads, track cost and usage, reduce the impact of account limits, and mitigate the complexity […]

Video auto-dubbing using Amazon Translate, Amazon Bedrock, and Amazon Polly

This post is co-written with MagellanTV and Mission Cloud.  Video dubbing, or content localization, is the process of replacing the original spoken language in a video with another language while synchronizing audio and video. Video dubbing has emerged as a key tool in breaking down linguistic barriers, enhancing viewer engagement, and expanding market reach. However, […]

Fine-tune Anthropic’s Claude 3 Haiku in Amazon Bedrock to boost model accuracy and quality

Frontier large language models (LLMs) like Anthropic Claude on Amazon Bedrock are trained on vast amounts of data, allowing Anthropic Claude to understand and generate human-like text. Fine-tuning Anthropic Claude 3 Haiku on proprietary datasets can provide optimal performance on specific domains or tasks. The fine-tuning as a deep level of customization represents a key […]

Build your multilingual personal calendar assistant with Amazon Bedrock and AWS Step Functions

This post shows you how to apply AWS services such as Amazon Bedrock, AWS Step Functions, and Amazon Simple Email Service (Amazon SES) to build a fully-automated multilingual calendar artificial intelligence (AI) assistant. It understands the incoming messages, translates them to the preferred language, and automatically sets up calendar reminders.

Medical content creation in the age of generative AI

Generative AI and transformer-based large language models (LLMs) have been in the top headlines recently. These models demonstrate impressive performance in question answering, text summarization, code, and text generation. Today, LLMs are being used in real settings by companies, including the heavily-regulated healthcare and life sciences industry (HCLS). The use cases can range from medical […]

Introducing guardrails in Knowledge Bases for Amazon Bedrock

Knowledge Bases for Amazon Bedrock is a fully managed capability that helps you securely connect foundation models (FMs) in Amazon Bedrock to your company data using Retrieval Augmented Generation (RAG). This feature streamlines the entire RAG workflow, from ingestion to retrieval and prompt augmentation, eliminating the need for custom data source integrations and data flow […]

Access control for vector stores using metadata filtering with Knowledge Bases for Amazon Bedrock

In November 2023, we announced Knowledge Bases for Amazon Bedrock as generally available. Knowledge bases allow Amazon Bedrock users to unlock the full potential of Retrieval Augmented Generation (RAG) by seamlessly integrating their company data into the language model’s generation process. This feature allows organizations to harness the power of large language models (LLMs) while […]

Create an end-to-end serverless digital assistant for semantic search with Amazon Bedrock

With the rise of generative artificial intelligence (AI), an increasing number of organizations use digital assistants to have their end-users ask domain-specific questions, using Retrieval Augmented Generation (RAG) over their enterprise data sources. As organizations transition from proofs of concept to production workloads, they establish objectives to run and scale their workloads with minimal operational […]

Indian language RAG with Cohere multilingual embeddings and Anthropic Claude 3 on Amazon Bedrock

Media and entertainment companies serve multilingual audiences with a wide range of content catering to diverse audience segments. These enterprises have access to massive amounts of data collected over their many years of operations. Much of this data is unstructured text and images. Conventional approaches to analyzing unstructured data for generating new content rely on […]

Category pie chart

Build an automated insight extraction framework for customer feedback analysis with Amazon Bedrock and Amazon QuickSight

In this post, we explore how to integrate LLMs into enterprise applications to harness their generative capabilities. We delve into the technical aspects of workflow implementation and provide code samples that you can quickly deploy or modify to suit your specific requirements. Whether you’re a developer seeking to incorporate LLMs into your existing systems or a business owner looking to take advantage of the power of NLP, this post can serve as a quick jumpstart.