AWS Machine Learning Blog

Category: Amazon Lex

Enhance the caller experience with hints in Amazon Lex

We understand speech input better if we have some background on the topic of conversation. Consider a customer service agent at an auto parts wholesaler helping with orders. If the agent knows that the customer is looking for tires, they’re more likely to recognize responses (for example, “Michelin”) on the phone. Agents often pick up […]

Read More

Use custom vocabulary in Amazon Lex to enhance speech recognition

In our daily conversations, we come across new words or terms that we may not know. Perhaps these are related to a new domain that we’re just getting familiar with, and we pick these up as we understand more about the domain. For example, home loan terminology (“curtailment”), shortened words, (“refi”, “comps”), and acronyms (“HELOC”) […]

Read More

Integrate ServiceNow with Amazon Lex chatbot for ticket processing

Conversational interfaces (or chatbots) can provide an intuitive interface for processes such as creating and monitoring tickets. Let’s consider a situation in which a recent hire on your team is required to cut tickets for office equipment. To do so, they have to interact with a ticketing software that the organization uses. This often requires […]

Read More

Build a virtual credit approval agent with Amazon Lex, Amazon Textract, and Amazon Connect

Banking and financial institutions review thousands of credit applications per week. The credit approval process requires financial organizations to invest time and resources in reviewing documents like W2s, bank statements, and utility bills. The overall experience can be costly for the organization. At the same time, organizations have to consider borrowers, who are waiting for […]

Read More

Manage dialog to elicit Amazon Lex slots in Amazon Connect contact flows

Amazon Lex can add powerful automation to contact center solutions, so you can enable self-service via interactive voice response (IVR) interactions or route calls to the appropriate agent based on caller input. These capabilities can increase customer satisfaction by streamlining the user experience, and improve containment rates in the contact center. In both the self-service […]

Read More

Interpret caller input using grammar slot types in Amazon Lex

Customer service calls require customer agents to have the customer’s account information to process the caller’s request. For example, to provide a status on an insurance claim, the support agent needs policy holder information such as the policy ID and claim number. Such information is often collected in the interactive voice response (IVR) flow at […]

Read More

Expedite IVR development with industry grammars on Amazon Lex

Amazon Lex is a service for building conversational interfaces into any application using voice and text. With Amazon Lex, you can easily build sophisticated, natural language, conversational bots (chatbots), virtual agents, and interactive voice response (IVR) systems. You can now use industry grammars to accelerate IVR development on Amazon Lex as part of your IVR […]

Read More

Easily migrate your IVR flows to Amazon Lex using the IVR migration tool

This post was co-written by John Heater, SVP of the Contact Center Practice at NeuraFlash. NeuraFlash is an Advanced AWS Partner with over 40 collective years of experience in the voice and automation space. With a dedicated team of conversation designers, data engineers, and AWS developers, NeuraFlash helps customers take advantage of the power of Amazon […]

Read More

Enable conversational chatbots for telephony using Amazon Lex and the Amazon Chime SDK

Conversational AI can deliver powerful, automated, interactive experiences through voice and text. Amazon Lex is a service that combines automatic speech recognition and natural language understanding technologies, so you can build these sophisticated conversational experiences. A common application of conversational AI is found in contact centers: self-service virtual agents. We’re excited to announce that you […]

Read More

How InpharmD uses Amazon Kendra and Amazon Lex to drive evidence-based patient care

The intersection of DI and AI: Drug information refers to the discovery, use, and management of healthcare and medical information. Healthcare providers have many challenges associated with drug information discovery, such as intensive time involvement, lack of accessibility, and accuracy of reliable data. The average clinical query requires a literature search that takes an average of 18.5 hours. In addition, drug information often lies in disparate information silos, behind pay walls and design walls, and quickly becomes stale.

Read More