AWS Machine Learning Blog
Category: Amazon Augmented AI
Automate digitization of transactional documents with human oversight using Amazon Textract and Amazon A2I
In this post, we present a solution for digitizing transactional documents using Amazon Textract and incorporate a human review using Amazon Augmented AI (A2I). You can find the solution source at our GitHub repository. Organizations must frequently process scanned transactional documents with structured text so they can perform operations such as fraud detection or financial […]
Read MoreHow NSF’s iHARP researchers are enabling active learning for polar ice analysis using Amazon SageMaker and Amazon A2I
The University of Maryland, Baltimore County’s Bina lab is a multidisciplinary research lab for employing advanced computer vision, machine learning (ML), and remote sensing techniques to discover new knowledge of our environment, especially in the Arctic and Antarctic regions. The lab’s work is supported by NSF BIGDATA awards (IIS-1947584, IIS-1838230), the NSF HDR Institute award […]
Read MoreDetect anomalies using Amazon Lookout for Metrics and review inference through Amazon A2I
Proactively detecting unusual or unexpected variances in your business metrics and reducing false alarms can help you stay on top of sudden changes and improve your business performance. Accurately identifying the root cause of deviation from normal business metrics and taking immediate steps to remediate an anomaly can not only boost user engagement but also […]
Read MoreDetect defects and augment predictions using Amazon Lookout for Vision and Amazon A2I
With machine learning (ML), more powerful technologies have become available that can automate the task of detecting visual anomalies in a product. However, implementing such ML solutions is time-consuming and expensive because it involves managing and setting up complex infrastructure and having the right ML skills. Furthermore, ML applications need human oversight to ensure accuracy […]
Read MoreAutomate continuous model improvement with Amazon Rekognition Custom Labels and Amazon A2I: Part 2
In Part 1 of this series, we walk through a continuous model improvement machine learning (ML) workflow with Amazon Rekognition Custom Labels and Amazon Augmented AI (Amazon A2I). We explained how we use AWS Step Functions to orchestrate model training and deployment, and custom label detection backed by a human labeling private workforce. We described […]
Read MoreAutomate continuous model improvement with Amazon Rekognition Custom Labels and Amazon A2I: Part 1
If you need to integrate image analysis into your business process to detect objects or scenes unique to your business domain, you need to build your own custom machine learning (ML) model. Building a custom model requires advanced ML expertise and can be a technical challenge if you have limited ML knowledge. Because model performance […]
Read MoreHuman-in-the-loop review of model explanations with Amazon SageMaker Clarify and Amazon A2I
Domain experts are increasingly using machine learning (ML) to make faster decisions that lead to better customer outcomes across industries including healthcare, financial services, and many more. ML can provide higher accuracy at lower cost, whereas expert oversight can ensure validation and continuous improvement of sensitive applications like disease diagnosis, credit risk management, and fraud […]
Read MoreDetect abnormal equipment behavior and review predictions using Amazon Lookout for Equipment and Amazon A2I
Companies that operate and maintain a broad range of industrial machinery such as generators, compressors, and turbines are constantly working to improve operational efficiency and avoid unplanned downtime due to component failure. They invest heavily in physical sensors (tags), data connectivity, data storage, and data visualization to monitor the condition of their equipment and get […]
Read MoreReviewing online fraud using Amazon Fraud Detector and Amazon A2I
Each year, organizations lose tens of billions of dollars to online fraud globally. Organizations such as ecommerce companies and credit card companies use machine learning (ML) to detect online fraud. Some of the most common types of online fraud include email account compromise (personal or business), new account fraud, and non-payment or non-delivery (including card […]
Read MoreThis month in AWS Machine Learning: January edition
Hello and welcome to our first “This month in AWS Machine Learning” of 2021! Every day there is something new going on in the world of AWS Machine Learning—from launches to new to use cases to interactive trainings. We’re packaging some of the not-to-miss information from the ML Blog and beyond for easy perusing each […]
Read More