AWS Machine Learning Blog
Category: Financial Services
Few-shot prompt engineering and fine-tuning for LLMs in Amazon Bedrock
This blog is part of the series, Generative AI and AI/ML in Capital Markets and Financial Services. Company earnings calls are crucial events that provide transparency into a company’s financial health and prospects. Earnings reports detail a firm’s financials over a specific period, including revenue, net income, earnings per share, balance sheet, and cash flow […]
Anthropic’s Claude 3.5 Sonnet ranks number 1 for business and finance in S&P AI Benchmarks by Kensho
Anthropic’s Claude 3.5 Sonnet currently ranks at the top of S&P AI Benchmarks by Kensho, which assesses large language models (LLMs) for finance and business. Kensho is the AI Innovation Hub for S&P Global. Using Amazon Bedrock, Kensho was able to quickly run Anthropic’s Claude 3.5 Sonnet through a challenging suite of business and financial […]
Automate derivative confirms processing using AWS AI services for the capital markets industry
In this post, we show how you can automate and intelligently process derivative confirms at scale using AWS AI services. The solution combines Amazon Textract, a fully managed ML service to effortlessly extract text, handwriting, and data from scanned documents, and AWS Serverless technologies, a suite of fully managed event-driven services for running code, managing data, and integrating applications, all without managing servers.
AI-powered assistants for investment research with multi-modal data: An application of Amazon Bedrock Agents
This post is a follow-up to Generative AI and multi-modal agents in AWS: The key to unlocking new value in financial markets. This blog is part of the series, Generative AI and AI/ML in Capital Markets and Financial Services. Financial analysts and research analysts in capital markets distill business insights from financial and non-financial data, […]
Streamline financial workflows with generative AI for email automation
This post explains a generative artificial intelligence (AI) technique to extract insights from business emails and attachments. It examines how AI can optimize financial workflow processes by automatically summarizing documents, extracting data, and categorizing information from email attachments. This enables companies to serve more clients, direct employees to higher-value tasks, speed up processes, lower expenses, enhance data accuracy, and increase efficiency.
Establishing an AI/ML center of excellence
The rapid advancements in artificial intelligence and machine learning (AI/ML) have made these technologies a transformative force across industries. According to a McKinsey study, across the financial services industry (FSI), generative AI is projected to deliver over $400 billion (5%) of industry revenue in productivity benefits. As maintained by Gartner, more than 80% of enterprises […]
Uncover hidden connections in unstructured financial data with Amazon Bedrock and Amazon Neptune
In asset management, portfolio managers need to closely monitor companies in their investment universe to identify risks and opportunities, and guide investment decisions. Tracking direct events like earnings reports or credit downgrades is straightforward—you can set up alerts to notify managers of news containing company names. However, detecting second and third-order impacts arising from events […]
Efficient continual pre-training LLMs for financial domains
Large language models (LLMs) are generally trained on large publicly available datasets that are domain agnostic. For example, Meta’s Llama models are trained on datasets such as CommonCrawl, C4, Wikipedia, and ArXiv. These datasets encompass a broad range of topics and domains. Although the resulting models yield amazingly good results for general tasks, such as […]
Generative AI and multi-modal agents in AWS: The key to unlocking new value in financial markets
Multi-modal data is a valuable component of the financial industry, encompassing market, economic, customer, news and social media, and risk data. Financial organizations generate, collect, and use this data to gain insights into financial operations, make better decisions, and improve performance. However, there are challenges associated with multi-modal data due to the complexity and lack […]
Enriching real-time news streams with the Refinitiv Data Library, AWS services, and Amazon SageMaker
This post is co-authored by Marios Skevofylakas, Jason Ramchandani and Haykaz Aramyan from Refinitiv, An LSEG Business. Financial service providers often need to identify relevant news, analyze it, extract insights, and take actions in real time, like trading specific instruments (such as commodities, shares, funds) based on additional information or context of the news item. […]