Artificial Intelligence and Machine Learning

Category: Amazon Bedrock Agents

How Apollo Tyres is unlocking machine insights using agentic AI-powered Manufacturing Reasoner

In this post, we share how Apollo Tyres used generative AI with Amazon Bedrock to harness the insights from their machine data in a natural language interaction mode to gain a comprehensive view of its manufacturing processes, enabling data-driven decision-making and optimizing operational efficiency.

Illustration Diagram

Innovate business logic by implementing return of control in Amazon Bedrock Agents

In the context of distributed systems and microservices architecture, orchestrating communication between diverse components presents significant challenges. However, with the launch of Amazon Bedrock Agents, the landscape is evolving, offering a simplified approach to agent creation and seamless integration of the return of control capability. In this post, we explore how Amazon Bedrock Agents revolutionizes agent creation and demonstrates the efficacy of the return of control capability in orchestrating complex interactions between multiple systems.

How Gardenia Technologies helps customers create ESG disclosure reports 75% faster using agentic generative AI on Amazon Bedrock

Gardenia Technologies, a data analytics company, partnered with the AWS Prototyping and Cloud Engineering (PACE) team to develop Report GenAI, a fully automated ESG reporting solution powered by the latest generative AI models on Amazon Bedrock. This post dives deep into the technology behind an agentic search solution using tooling with Retrieval Augmented Generation (RAG) and text-to-SQL capabilities to help customers reduce ESG reporting time by up to 75%. We demonstrate how AWS serverless technology, combined with agents in Amazon Bedrock, are used to build scalable and highly flexible agent-based document assistant applications.

Enhanced diagnostics flow with LLM and Amazon Bedrock agent integration

In this post, we explore how Noodoe uses AI and Amazon Bedrock to optimize EV charging operations. By integrating LLMs, Noodoe enhances station diagnostics, enables dynamic pricing, and delivers multilingual support. These innovations reduce downtime, maximize efficiency, and improve sustainability. Read on to discover how AI is transforming EV charging management.

Ads image generation example for a product.

Going beyond AI assistants: Examples from Amazon.com reinventing industries with generative AI

Non-conversational applications offer unique advantages such as higher latency tolerance, batch processing, and caching, but their autonomous nature requires stronger guardrails and exhaustive quality assurance compared to conversational applications, which benefit from real-time user feedback and supervision. This post examines four diverse Amazon.com examples of such generative AI applications.

Part 3: Building an AI-powered assistant for investment research with multi-agent collaboration in Amazon Bedrock and Amazon Bedrock Data Automation

In this post, we walk through how to build a multi-agent investment research assistant using the multi-agent collaboration capability of Amazon Bedrock. Our solution demonstrates how a team of specialized AI agents can work together to analyze financial news, evaluate stock performance, optimize portfolio allocations, and deliver comprehensive investment insights—all orchestrated through a unified, natural language interface.

Integrate Amazon Bedrock Agents with Slack - Featured Image

Integrate Amazon Bedrock Agents with Slack

In this post, we present a solution to incorporate Amazon Bedrock Agents in your Slack workspace. We guide you through configuring a Slack workspace, deploying integration components in Amazon Web Services, and using this solution.

End to end architecture of a domain aware data processing pipeline for insurance documents

Build a domain‐aware data preprocessing pipeline: A multi‐agent collaboration approach

In this post, we introduce a multi-agent collaboration pipeline for processing unstructured insurance data using Amazon Bedrock, featuring specialized agents for classification, conversion, and metadata extraction. We demonstrate how this domain-aware approach transforms diverse data formats like claims documents, videos, and audio files into metadata-rich outputs that enable fraud detection, customer 360-degree views, and advanced analytics.

Automating complex document processing: How Onity Group built an intelligent solution using Amazon Bedrock

In this post, we explore how Onity Group, a financial services company specializing in mortgage servicing and origination, transformed their document processing capabilities using Amazon Bedrock and other AWS services. The solution helped Onity achieve a 50% reduction in document extraction costs while improving overall accuracy by 20% compared to their previous OCR and AI/ML solution.

Figure 1 – Vxceed's LimoConnect Q architecture

Vxceed secures transport operations with Amazon Bedrock

AWS partnered with Vxceed to support their AI strategy, resulting in the development of LimoConnect Q, an innovative ground transportation management solution. Using AWS services including Amazon Bedrock and Lambda, Vxceed successfully built a secure, AI-powered solution that streamlines trip booking and document processing.