AWS Machine Learning Blog

Category: Amazon SageMaker Ground Truth

Inspect your data labels with a visual, no code tool to create high-quality training datasets with Amazon SageMaker Ground Truth Plus

Launched at AWS re:Invent 2021, Amazon SageMaker Ground Truth Plus helps you create high-quality training datasets by removing the undifferentiated heavy lifting associated with building data labeling applications and managing the labeling workforce. All you do is share data along with labeling requirements, and Ground Truth Plus sets up and manages your data labeling workflow […]

Read More

Build a custom Q&A dataset using Amazon SageMaker Ground Truth to train a Hugging Face Q&A NLU model

In recent years, natural language understanding (NLU) has increasingly found business value, fueled by model improvements as well as the scalability and cost-efficiency of cloud-based infrastructure. Specifically, the Transformer deep learning architecture, often implemented in the form of BERT models, has been highly successful, but training, fine-tuning, and optimizing these models has proven to be […]

Read More

Build an MLOps sentiment analysis pipeline using Amazon SageMaker Ground Truth and Databricks MLflow

As more organizations move to machine learning (ML) to drive deeper insights, two key stumbling blocks they run into are labeling and lifecycle management. Labeling is the identification of data and adding labels to provide context so an ML model can learn from it. Labels might indicate a phrase in an audio file, a car […]

Read More

Label text for aspect-based sentiment analysis using SageMaker Ground Truth

The Amazon Machine Learning Solutions Lab (MLSL) recently created a tool for annotating text with named-entity recognition (NER) and relationship labels using Amazon SageMaker Ground Truth. Annotators use this tool to label text with named entities and link their relationships, thereby building a dataset for training state-of-the-art natural language processing (NLP) machine learning (ML) models. Most […]

Read More

Develop an automatic review image inspection service with Amazon SageMaker

This is a guest post by Jihye Park, a Data Scientist at MUSINSA.  MUSINSA is one of the largest online fashion platforms in South Korea, serving 8.4M customers and selling 6,000 fashion brands. Our monthly user traffic reaches 4M, and over 90% of our demographics consist of teens and young adults who are sensitive to […]

Read More

Your guide to AI and ML at AWS re:Invent 2021

It’s almost here! Only 9 days until AWS re:Invent 2021, and we’re very excited to share some highlights you might enjoy this year. The AI/ML team has been working hard to serve up some amazing content and this year, we have more session types for you to enjoy. Back in person, we now have chalk […]

Read More

Chain custom Amazon SageMaker Ground Truth jobs for image processing

Amazon SageMaker Ground Truth supports many different types of labeling jobs, including several image-based labeling workflows like image-level labels, bounding box-specific labels, or pixel-level labeling. For situations not covered by these standard approaches, Ground Truth also supports custom image-based labeling, which allows you to create a labeling workflow with a completely unique UI and associated […]

Read More

Gamify Amazon SageMaker Ground Truth labeling workflows via a bar chart race

Labeling is an indispensable stage of data preprocessing in supervised learning. Amazon SageMaker Ground Truth is a fully managed data labeling service that makes it easy to build highly accurate training datasets for machine learning. Ground Truth helps improve the quality of labels through annotation consolidation and audit workflows. Ground Truth is easy to use, […]

Read More

Build your own brand detection and visibility using Amazon SageMaker Ground Truth and Amazon Rekognition Custom Labels – Part 2: Training and analysis workflows

In Part 1 of this series, we showed how to build a brand detection solution using Amazon SageMaker Ground Truth and Amazon Rekognition Custom Labels. The solution was built on a serverless architecture with a custom user interface to identify a company brand or logo from video content and get an in-depth view of screen […]

Read More

Create a large-scale video driving dataset with detailed attributes using Amazon SageMaker Ground Truth

Do you ever wonder what goes behind bringing various levels of autonomy to vehicles? What the vehicle sees (perception) and how the vehicle predicts the actions of different agents in the scene (behavior prediction) are the first two steps in autonomous systems. In order for these steps to be successful, large-scale driving datasets are key. […]

Read More