AWS Machine Learning Blog

Category: Internet of Things

Demystifying machine learning at the edge through real use cases

Edge is a term that refers to a location, far from the cloud or a big data center, where you have a computer device (edge device) capable of running (edge) applications. Edge computing is the act of running workloads on these edge devices. Machine learning at the edge (ML@Edge) is a concept that brings the […]

Read More

Amazon Rekognition introduces Streaming Video Events to provide real-time alerts on live video streams

Today, AWS announced the general availability of Amazon Rekognition Streaming Video Events, a fully managed service for camera manufacturers and service providers that uses machine learning (ML) to detect objects such as people, pets, and packages in live video streams from connected cameras. Amazon Rekognition Streaming Video Events sends them a notification as soon as […]

Read More

3xLOGIC uses Amazon Rekognition Streaming Video Events to provide intelligent video analytics on live video streams to monitoring agents

3xLOGIC is a leader in commercial electronic security systems. They provide commercial security systems and managed video monitoring for businesses, hospitals, schools, and government agencies. Managed video monitoring is a critical component of a comprehensive security strategy for 3xLOGIC’s customers. With more than 50,000 active cameras in the field, video monitoring teams face a daily […]

Read More

Abode uses Amazon Rekognition Streaming Video Events to provide real-time notifications to their smart home customers

Abode Systems (Abode) offers homeowners a comprehensive suite of do-it-yourself home security solutions that can be set up in minutes and enables homeowners to keep their family and property safe. Since the company’s launch in 2015, in-camera motion detection sensors have played an essential part in Abode’s solution, enabling customers to receive notifications and monitor […]

Read More

Anomaly detection with Amazon SageMaker Edge Manager using AWS IoT Greengrass V2

Deploying and managing machine learning (ML) models at the edge requires a different set of tools and skillsets as compared to the cloud. This is primarily due to the hardware, software, and networking restrictions at the edge sites. This makes deploying and managing these models more complex. An increasing number of applications, such as industrial […]

Read More

Amazon Lookout for Vision now supports visual inspection of product defects at the edge

Discrete and continuous manufacturing lines generate a high volume of products at low latency, ranging from milliseconds to a few seconds. To identify defects at the same throughput of production, camera streams of images must be processed at low latency. Additionally, factories may have low network bandwidth or intermittent cloud connectivity. In such scenarios, you […]

Read More

Build machine learning at the edge applications using Amazon SageMaker Edge Manager and AWS IoT Greengrass V2

Running machine learning (ML) models at the edge can be a powerful enhancement for Internet of Things (IoT) solutions that must perform inference without a constant connection back to the cloud. Although there are numerous ways to train ML models for countless applications, effectively optimizing and deploying these models for IoT devices can present many […]

Read More

Run ML inference on AWS Snowball Edge with Amazon SageMaker Edge Manager and AWS IoT Greengrass

You can use AWS Snowball Edge devices in locations like cruise ships, oil rigs, and factory floors with limited to no network connectivity for a wide range of machine learning (ML) applications such as surveillance, facial recognition, and industrial inspection. However, given the remote and disconnected nature of these devices, deploying and managing ML models […]

Read More

Smart city traffic anomaly detection using Amazon Lookout for Metrics and Amazon Kinesis Data Analytics Studio

Cities across the world are transforming their public services infrastructure with the mission of enhancing the quality of life of its residents. Roads and traffic management systems are part of the central nervous system of every city. They need intelligent monitoring and automation in order to prevent substantial productivity loss and in extreme cases life-threatening […]

Read More

Protecting people from hazardous areas through virtual boundaries with Computer Vision

As companies welcome more autonomous robots and other heavy equipment into the workplace, we need to ensure equipment can operate safely around human teammates. In this post, we will show you how to build a virtual boundary with computer vision and AWS DeepLens, the AWS deep learning-enabled video camera designed for developers to learn machine […]

Read More