AWS Machine Learning Blog

Category: Amazon Kinesis

Translate, redact and analyze streaming data using SQL functions with Amazon Kinesis Data Analytics, Amazon Translate, and Amazon Comprehend

You may have applications that generate streaming data that is full of records containing customer case notes, product reviews, and social media messages, in many languages. Your task is to identify the products that people are talking about, determine if they’re expressing positive or negative sentiment, translate their comments into a common language, and create […]

Read More

The Intel®3D Athlete Tracking (3DAT) scalable architecture deploys pose estimation models using Amazon Kinesis Data Streams and Amazon EKS

This blog post is co-written by Jonathan Lee, Nelson Leung, Paul Min, and Troy Squillaci from Intel.  In Part 1 of this post, we discussed how Intel®3DAT collaborated with AWS Machine Learning Professional Services (MLPS) to build a scalable AI SaaS application. 3DAT uses computer vision and AI to recognize, track, and analyze over 1,000 […]

Read More

Automate a shared bikes and scooters classification model with Amazon SageMaker Autopilot

Amazon SageMaker Autopilot makes it possible for organizations to quickly build and deploy an end-to-end machine learning (ML) model and inference pipeline with just a few lines of code or even without any code at all with Amazon SageMaker Studio. Autopilot offloads the heavy lifting of configuring infrastructure and the time it takes to build […]

Read More

How Intel Olympic Technology Group built a smart coaching SaaS application by deploying pose estimation models – Part 1

The Intel Olympic Technology Group (OTG), a division within Intel focused on bringing cutting-edge technology to Olympic athletes, collaborated with AWS Machine Learning Professional Services (MLPS) to build a smart coaching software as a service (SaaS) application using computer vision (CV)-based pose estimation models. Pose estimation is a class of machine learning (ML) model that […]

Read More

Simplify and automate anomaly detection in streaming data with Amazon Lookout for Metrics

Do you want to monitor your business metrics and detect anomalies in your existing streaming data pipelines? Amazon Lookout for Metrics is a service that uses machine learning (ML) to detect anomalies in your time series data. The service goes beyond simple anomaly detection. It allows developers to set up autonomous monitoring for important metrics […]

Read More

Smart city traffic anomaly detection using Amazon Lookout for Metrics and Amazon Kinesis Data Analytics Studio

Cities across the world are transforming their public services infrastructure with the mission of enhancing the quality of life of its residents. Roads and traffic management systems are part of the central nervous system of every city. They need intelligent monitoring and automation in order to prevent substantial productivity loss and in extreme cases life-threatening […]

Read More
The following is the architecture diagram for integrating online ML inference in a telemedicine contact flow via Amazon Connect.

Applying voice classification in an Amazon Connect telemedicine contact flow

Given the rising demand for fast and effective COVID-19 detection, customers are exploring the usage of respiratory sound data, like coughing, breathing, and counting, to automatically diagnose COVID-19 based on machine learning (ML) models. University of Cambridge researchers built a COVID-19 sound application and demonstrated that a simple binary ML classifier can classify healthy and […]

Read More
The following diagram shows the serverless architecture that you build.

Setting up an IVR to collect customer feedback via phone using Amazon Connect and AWS AI Services

As many companies place their focus on customer centricity, customer feedback becomes a top priority. However, as new laws are formed, for instance GDPR in Europe, collecting feedback from customers can become increasingly difficult. One means of collecting this feedback is via phone. When a customer calls an agency or call center, feedback may be […]

Read More

Automated model refresh with streaming data

In today’s world, being able to quickly bring on-premises machine learning (ML) models to the cloud is an integral part of any cloud migration journey. This post provides a step-by-step guide for launching a solution that facilitates the migration journey for large-scale ML workflows. This solution was developed by the Amazon ML Solutions Lab for […]

Read More

Video streaming and deep learning: Using Amazon Kinesis Video Streams with Deep Java Library

Amazon Kinesis Video Streams allows you to easily ingest video data from connected devices for processing. One of the most effective ways to process this video data is using the power of deep learning. You can create an efficient service infrastructure to run these computations with a Java server, but Java support for deep learning […]

Read More