AWS Machine Learning Blog
Category: Analytics
Build and train ML models using a data mesh architecture on AWS: Part 2
This is the second part of a series that showcases the machine learning (ML) lifecycle with a data mesh design pattern for a large enterprise with multiple lines of business (LOBs) and a Center of Excellence (CoE) for analytics and ML. In part 1, we addressed the data steward persona and showcased a data mesh […]
Read MoreBuild a predictive maintenance solution with Amazon Kinesis, AWS Glue, and Amazon SageMaker
Organizations are increasingly building and using machine learning (ML)-powered solutions for a variety of use cases and problems, including predictive maintenance of machine parts, product recommendations based on customer preferences, credit profiling, content moderation, fraud detection, and more. In many of these scenarios, the effectiveness and benefits derived from these ML-powered solutions can be further […]
Read MoreTranslate, redact and analyze streaming data using SQL functions with Amazon Kinesis Data Analytics, Amazon Translate, and Amazon Comprehend
You may have applications that generate streaming data that is full of records containing customer case notes, product reviews, and social media messages, in many languages. Your task is to identify the products that people are talking about, determine if they’re expressing positive or negative sentiment, translate their comments into a common language, and create […]
Read MoreThe Intel®3D Athlete Tracking (3DAT) scalable architecture deploys pose estimation models using Amazon Kinesis Data Streams and Amazon EKS
This blog post is co-written by Jonathan Lee, Nelson Leung, Paul Min, and Troy Squillaci from Intel. In Part 1 of this post, we discussed how Intel®3DAT collaborated with AWS Machine Learning Professional Services (MLPS) to build a scalable AI SaaS application. 3DAT uses computer vision and AI to recognize, track, and analyze over 1,000 […]
Read MoreControl access to Amazon SageMaker Feature Store offline using AWS Lake Formation
This post was last reviewed and updated June, 2022 with revised feature groups (tables) and features (columns) permissions. You can establish feature stores to provide a central repository for machine learning (ML) features that can be shared with data science teams across your organization for training, batch scoring, and real-time inference. Data science teams can […]
Read MoreReceive notifications for image analysis with Amazon Rekognition Custom Labels and analyze predictions
Amazon Rekognition Custom Labels is a fully managed computer vision service that allows developers to build custom models to classify and identify objects in images that are specific and unique to your business. Rekognition Custom Labels doesn’t require you to have any prior computer vision expertise. You can get started by simply uploading tens of […]
Read MoreAutomate a shared bikes and scooters classification model with Amazon SageMaker Autopilot
Amazon SageMaker Autopilot makes it possible for organizations to quickly build and deploy an end-to-end machine learning (ML) model and inference pipeline with just a few lines of code or even without any code at all with Amazon SageMaker Studio. Autopilot offloads the heavy lifting of configuring infrastructure and the time it takes to build […]
Read MoreProcess Amazon Redshift data and schedule a training pipeline with Amazon SageMaker Processing and Amazon SageMaker Pipelines
Customers in many different domains tend to work with multiple sources for their data: object-based storage like Amazon Simple Storage Service (Amazon S3), relational databases like Amazon Relational Database Service (Amazon RDS), or data warehouses like Amazon Redshift. Machine learning (ML) practitioners are often driven to work with objects and files instead of databases and […]
Read MoreBring Your Amazon SageMaker model into Amazon Redshift for remote inference
Amazon Redshift, a fast, fully managed, widely used cloud data warehouse, natively integrates with Amazon SageMaker for machine learning (ML). Tens of thousands of customers use Amazon Redshift to process exabytes of data every day to power their analytics workloads. Data analysts and database developers want to use this data to train ML models, which […]
Read MoreBuild a system for catching adverse events in real-time using Amazon SageMaker and Amazon QuickSight
Social media platforms provide a channel of communication for consumers to talk about various products, including the medications they take. For pharmaceutical companies, monitoring and effectively tracking product performance provides customer feedback about the product, which is vital to maintaining and improving patient safety. However, when an unexpected medical occurrence resulting from a pharmaceutical product […]
Read More