AWS Security Blog

The Resource Groups Tagging API Makes It Easier to List Your Resources by Using a New Pagination Parameter

by Nitin Chandola | on | in Announcements, How-to guides | | Comments

Today, the Resource Groups Tagging API introduced a pagination parameter to the GetResources action that makes it easier for you to manage lists of resources returned by your queries. Using this parameter, you can list your resources that are associated with specific tags or resource types, and limit result sets to a specific number per page. Previously, you could list resources only by the number of tags.

Let’s say you want to query your resources that have tags with the key of “stage” and the value of “production”. You want to return as many as 25 resources per page of results. The following Java code example meets those criteria.

TagFilter tagFilter = new TagFilter();
tagFilter.setKey("stage");
tagFilter.setValues(Arrays.asList(new String[] { "production" }));

List<TagFilter> tagFilters = new ArrayList<>();
tagFilters.add(tagFilter);

AWSResourceGroupsTaggingAPIClient client = new AWSResourceGroupsTaggingAPIClient();
GetResourcesRequest request = new GetResourcesRequest();
request.withResourcesPerPage(25).withTagFilters(tagFilters);
GetResourcesResult result = client.getResources(request);

Also, with the updated AWS CLI, the GetResources action by default returns all items that meet your query criteria.  If you want to use pagination, the AWS CLI continues to support the case in which you receive a subset of items returned from a query and a pagination token for looping through the remaining items.

For example, the following AWS CLI script uses automatic pagination to return all resources that meet the query criteria.

aws resourcegroupstaggingapi get-resources

However, if you want to return resources in groups of 25, the following AWS CLI script example uses custom pagination and returns as many as 25 resources per page that meet the query criteria.

aws resourcegroupstaggingapi get-resources –-resources-per-page 25

If you have comments about this post, submit them in the “Comments” section below. Start a new thread on the Resource Groups Tagging API forum if you have questions about or issues using the new functionality.

– Nitin

How to Control TLS Ciphers in Your AWS Elastic Beanstalk Application by Using AWS CloudFormation

by Paco Hope | on | in How-to guides | | Comments

Securing data in transit is critical to the integrity of transactions on the Internet. Whether you log in to an account with your user name and password or give your credit card details to a retailer, you want your data protected as it travels across the Internet from place to place. One of the protocols in widespread use to protect data in transit is Transport Layer Security (TLS). Every time you access a URL that begins with “https” instead of just “http”, you are using a TLS-secured connection to a website.

To demonstrate that your application has a strong TLS configuration, you can use services like the one provided by SSL Labs. There are also open source, command-line-oriented TLS testing programs such as testssl.sh (which I do not cover in this post) and sslscan (which I cover later in this post). The goal of testing your TLS configuration is to provide evidence that weak cryptographic ciphers are disabled in your TLS configuration and only strong ciphers are enabled. In this blog post, I show you how to control the TLS security options for your secure load balancer in AWS CloudFormation, pass the TLS certificate and host name for your secure AWS Elastic Beanstalk application to the CloudFormation script as parameters, and then confirm that only strong TLS ciphers are enabled on the launched application by testing it with SSLLabs.

Background

In some situations, it’s not enough to simply turn on TLS with its default settings and call it done. Over the years, a number of vulnerabilities have been discovered in the TLS protocol itself with codenames such as CRIME, POODLE, and Logjam. Though some vulnerabilities were in specific implementations, such as OpenSSL, others were vulnerabilities in the Secure Sockets Layer (SSL) or TLS protocol itself. (more…)

AWS HIPAA Program Update – Dedicated Instances and Hosts Are No Longer Required

by Craig Liebendorfer | on | in Announcements, Compliance | | Comments

Over the years, we have seen tremendous growth in the use of the AWS Cloud for healthcare applications. Our customers and AWS Partner Network (APN) Partners who offer solutions that store, process, and transmit Protected Health Information (PHI) sign a Business Associate Addendum (BAA) with AWS. As part of the AWS HIPAA compliance program, customers and APN Partners must use a set of HIPAA Eligible Services for portions of their applications that store, process, and transmit PHI.

Recently, our HIPAA compliance program announced that those AWS customers and APN Partners who have signed a BAA with AWS are no longer required to use Amazon EC2 Dedicated Instances and Dedicated Hosts to store, process, or transmit PHI. To learn more about the announcement and some architectural optimizations you should consider making, see the full APN Blog post.

–  Craig

How to Update AWS CloudHSM Devices and Client Instances to the Software and Firmware Versions Supported by AWS

by Tracy Pierce | on | in How-to guides, Security | | Comments

As I explained in my previous Security Blog post, a hardware security module (HSM) is a hardware device designed with the security of your data and cryptographic key material in mind. It is tamper-resistant hardware that prevents unauthorized users from attempting to pry open the device, plug in any extra devices to access data or keys such as subtokens, or damage the outside housing. The HSM device AWS CloudHSM offers is the Luna SA 7000 (also called Safenet Network HSM 7000), which is created by Gemalto. Depending on the firmware version you install, many of the security properties of these HSMs will have been validated under Federal Information Processing Standard (FIPS) 140-2, a standard issued by the National Institute of Standards and Technology (NIST) for cryptography modules. These standards are in place to protect the integrity and confidentiality of the data stored on cryptographic modules.

To help ensure its continued use, functionality, and support from AWS, we suggest that you update your AWS CloudHSM device software and firmware as well as the client instance software to current versions offered by AWS. As of the publication of this blog post, the current non-FIPS-validated versions are 5.4.9/client, 5.3.13/software, and 6.20.2/firmware, and the current FIPS-validated versions are 5.4.9/client, 5.3.13/software, and 6.10.9/firmware. (The firmware version determines FIPS validation.) It is important to know your current versions before updating so that you can follow the correct update path.

In this post, I demonstrate how to update your current CloudHSM devices and client instances so that you are using the most current versions of software and firmware. If you contact AWS Support for CloudHSM hardware and application issues, you will be required to update to these supported versions before proceeding. Also, any newly provisioned CloudHSM devices will use these supported software and firmware versions only, and AWS does not offer “downgrade options.

Note: Before you perform any updates, check with your local CloudHSM administrator and application developer to verify that these updates will not conflict with your current applications or architecture. (more…)

Now Available: Use Resource-Level Permissions to Control Access to and Permissions on Auto Scaling Resources

by Craig Liebendorfer | on | in Announcements | | Comments

Auto Scaling image

As of May 15, 2017, you can define AWS Identity and Access Management policies to control which Auto Scaling resources users can access and the actions users are permitted to perform on those resources. Auto Scaling helps you maintain application availability and allows you to scale your Amazon EC2 capacity up or down automatically according to conditions you define.

With resource-level permissions, you can enable different users within an organization, such as application developers and IT specialists, to access and modify launch configurations and Auto Scaling groups with appropriately configured permissions.

To learn more, see the full What’s New announcement.

– Craig

Updated AWS SOC Reports Include Three New Regions and Three Additional Services

by Chad Woolf | on | in Announcements, Compliance | | Comments

 

SOC logo

The updated AWS Service Organization Control (SOC) 1 and SOC 2 Security, Availability, and Confidentiality Reports covering the period of October 1, 2016, through March 31, 2017, are now available. Because we are always looking for ways to improve the customer experience, the current AWS SOC 2 Confidentiality Report has been combined with the AWS SOC 2 Security & Availability Report, making for a seamless read. The updated AWS SOC 3 Security & Availability Report also is publicly available by download.

Additionally, the following three AWS services have been added to the scope of our SOC Reports:

The AWS SOC Reports now also include our three newest regions: US East (Ohio), Canada (Central), and EU (London). SOC Reports now cover 15 regions and supporting edge locations across the globe. See AWS Global Infrastructure for additional geographic information related to AWS SOC.

The updated SOC Reports are available now through AWS Artifact in the AWS Management Console. To request a report:

  1. Sign in to your AWS account.
  2. In the list of services under Security, Identity and Compliance, choose Compliance Reports. On the next page, choose the report you would like to review. Note that you might need to request approval from Amazon for some reports. Requests are reviewed and approved by Amazon within 24 hours.

For further information, see frequently asked questions about the AWS SOC program.  

– Chad

New Whitepaper: Aligning to the NIST Cybersecurity Framework in the AWS Cloud

by Chris Gile | on | in Compliance | | Comments

NIST logo

Today, we released the Aligning to the NIST Cybersecurity Framework in the AWS Cloud whitepaper. Both public and commercial sector organizations can use this whitepaper to assess the AWS environment against the National Institute of Standards and Technology (NIST) Cybersecurity Framework (CSF) and improve the security measures they implement and operate (also known as security in the cloud). The whitepaper also provides a third-party auditor letter attesting to the AWS Cloud offering’s conformance to NIST CSF risk management practices (also known as security of the cloud), allowing organizations to properly protect their data across AWS.

In February 2014, NIST published the Framework for Improving Critical Infrastructure Cybersecurity in response to Presidential Executive Order 13636, “Improving Critical Infrastructure Cybersecurity,” which called for the development of a voluntary framework to help organizations improve the cybersecurity, risk management, and resilience of their systems. The Cybersecurity Enhancement Act of 2014 reinforced the legitimacy and authority of the NIST CSF by codifying it and its voluntary adoption into law, and federal agency Federal Information Security Modernization Act (FISMA) reporting metrics now align to the NIST CSF. Though it is intended for adoption by the critical infrastructure sector, the foundational set of security disciplines in the NIST CSF has been endorsed by government and industry as a recommended baseline for use by any organization, regardless of its sector or size.

We recognize the additional level of effort an organization has to expend for each new security assurance framework it implements. To reduce that burden, we provide a detailed breakout of AWS Cloud offerings and associated customer and AWS responsibilities to facilitate alignment with the NIST CSF. Organizations ranging from federal and state agencies to regulated entities to large enterprises can use this whitepaper as a guide for implementing AWS solutions to achieve the risk management outcomes in the NIST CSF.

Security, compliance, and customer data protection are our top priorities, and we will continue to provide the resources and services for you to meet your desired outcomes while integrating security best practices in the AWS environment. When you use AWS solutions, you can be confident that we protect your data with a level of assurance that meets, if not exceeds, your requirements and needs, and gives you the resources to secure your AWS environment. To request support for implementing the NIST CSF in your organization by using AWS services, contact your AWS account manager.

– Chris Gile, Senior Manager, Security Assurance

The AWS EU (London) Region Achieves Public Services Network (PSN) Assurance

by Oliver Bell | on | in Announcements, Compliance | | Comments

UK flag

AWS is excited to announce that the AWS EU (London) Region has achieved Public Services Network (PSN) assurance. This means that the EU (London) Region can now be connected to the PSN (or PSN customers) by PSN-certified AWS Direct Connect partners. PSN assurance demonstrates to our UK Public Sector customers that the EU (London) Region has met the stringent requirements of PSN and provides an assured platform on which to build UK Public Sector services. Customers are required to ensure that applications and configurations applied to their AWS instances meet the PSN standards, and they must undertake PSN certification for the content, platform, applications, systems, and networks they run on AWS (but no longer need to include AWS infrastructure and products in their certification).

In conjunction with our Standardized Architecture for UK-OFFICIAL, PSN assurance enables UK Public Sector organizations to move their UK-OFFICIAL classified data to the EU (London) Region in a controlled and risk-managed manner. AWS has also created a UK-OFFICIAL on AWS Quick Start, which provisions an environment suitable for UK-OFFICIAL classified data. This Quick Start includes guidance and controls that help public sector organizations manage risks and ensure security when handling UK-OFFICIAL information assets.

You can download the EU (London) Region PSN Code of Connection and Service Compliance certificates through AWS Artifact. For further information about using AWS in the context of the National Cyber Security Centre (NCSC) UK’s Cloud Security Principles, see Using AWS in the Context of NCSC UK’s Cloud Security Principles.

– Oliver

How to Visualize and Refine Your Network’s Security by Adding Security Group IDs to Your VPC Flow Logs

by Guy Denney | on | in How-to guides, Security | | Comments

Many organizations begin their cloud journey to AWS by moving a few applications to demonstrate the power and flexibility of AWS. This initial application architecture includes building security groups that control the network ports, protocols, and IP addresses that govern access and traffic to their AWS Virtual Private Cloud (VPC). When the architecture process is complete and an application is fully functional, some organizations forget to revisit their security groups to optimize rules and help ensure the appropriate level of governance and compliance. Not optimizing security groups can create less-than-optimal security, with ports open that may not be needed or source IP ranges set that are broader than required.

Last year, I published an AWS Security Blog post that showed how to optimize and visualize your security groups. Today’s post continues in the vein of that post by using Amazon Kinesis Firehose and AWS Lambda to enrich the VPC Flow Logs dataset and enhance your ability to optimize security groups. The capabilities in this post’s solution are based on the Lambda functions available in this VPC Flow Log Appender GitHub repository.

Solution overview

Removing unused rules or limiting source IP addresses requires either an in-depth knowledge of an application’s active ports on Amazon EC2 instances or analysis of active network traffic. In this blog post, I discuss a method to:

  • Use VPC Flow Logs to capture information about the IP traffic in an Amazon VPC.
  • Enrich the VPC Flow Logs dataset with security group IDs by using Firehose and Lambda.
  • Demonstrate how to visualize and analyze network traffic from VPC Flow Logs by using Amazon Elasticsearch Service (Amazon ES).

Using this approach can help you remediate security group rules to necessary source IPs, ports, and nested security groups, helping to improve the security of your AWS resources while minimizing the potential risk to production environments. (more…)

Amazon Simple Queue Service Introduces Server-Side Encryption for Queues

by Craig Liebendorfer | on | in Announcements | | Comments

SQS + SSE image

You can now use Amazon Simple Queue Service (SQS) to exchange sensitive data between applications using server-side encryption (SSE). SQS is a fully managed message queuing service for reliably communicating between distributed software components and microservices at any scale. You can use SQS to take advantage of the scale, cost, and operational benefits of a managed messaging service. The addition of SSE allows you to transmit sensitive data with the increased security of using encrypted queues.

SQS SSE uses the 256-bit Advanced Encryption Standard (AES-256 GCM algorithm) to encrypt each message body by using a unique key. AWS Key Management Service (KMS) provides encryption key management. In addition, KMS works with AWS CloudTrail to provide logs of all encryption key usage to help meet your regulatory and compliance needs.

SQS SSE is now available in the US West (Oregon) and US East (Ohio) Regions, with more AWS Regions to follow. There is no additional charge for using encrypted queues, but there is a charge to use KMS. For more information about KMS and CloudTrail pricing, see AWS Key Management Service Pricing.

To learn more, see the full post on the AWS Blog.

– Craig