AWS Machine Learning Blog

Category: Analytics

Run Deep Learning Frameworks with GPU Instance Types on Amazon EMR

Today, AWS is excited to announce support for Apache MXNet and new generation GPU instance types on Amazon EMR, which enables you to run distributed deep neural networks alongside your machine learning workflows and big data processing. Additionally, you can install and run custom deep learning libraries on your EMR clusters with GPU hardware. Through […]

Read More

Capture and Analyze Customer Demographic Data Using Amazon Rekognition & Amazon Athena

Millions of customers shop in brick and mortar stores every day. Currently, most of these retailers have no efficient way to identify these shoppers and understand their purchasing behavior. They rely on third-party market research firms to provide customer demographic and purchase preference information.

This blog post walks you how you can use AWS services to identify purchasing behavior of your customers. We show you:

How retailers can use captured images in real time.
How Amazon Rekognition can be used to retrieve face attributes like age range, emotions, gender, etc.
How you can use Amazon Athena and Amazon QuickSight to analyze the face attributes.
How you can create unique insights and learn about customer emotions and demographics.
How to implement serverless architecture using AWS managed services.

Read More

Build PMML-based Applications and Generate Predictions in AWS

If you generate machine learning (ML) models, you know that the key challenge is exporting and importing them into other frameworks to separate model generation and prediction. Many applications use PMML (Predictive Model Markup Language) to move ML models from one framework to another. PMML is an XML representation of a data mining model. In […]

Read More