AWS Database Blog

Category: RDS for PostgreSQL

Simplify data integration using zero-ETL from Amazon RDS to Amazon Redshift

Organizations rely on real-time analytics to gain insights into their core business drivers, enhance operational efficiency, and maintain a competitive edge. Traditionally, this has involved the use of complex extract, transform, and load (ETL) pipelines. ETL is the process of combining, cleaning, and normalizing data from different sources to prepare it for analytics, AI, and […]

Improve PostgreSQL performance: Diagnose and mitigate lock manager contention

Are your database read operations unexpectedly slowing down as your workload scales? Many organizations running PostgreSQL-based systems encounter performance bottlenecks that aren’t immediately obvious. When many concurrent read operations access tables with numerous partitions or indexes, they can even exhaust PostgreSQL’s fast path locking mechanism, forcing the system to use shared memory locks. The switch […]

Leveling up Amazon RDS with AWS Graviton4: Benchmarks

In November 2024, AWS introduced the latest evolution of its custom-designed ARM-based processors with Graviton4, delivering significant performance and efficiency improvements for Amazon RDS for PostgreSQL, MySQL, and MariaDB and Amazon Aurora. In this post, we focus on Amazon RDS for PostgreSQL and compare the performance of the new Graviton4 instances to both Graviton3 and Graviton2. Using benchmarks, we evaluate throughput, latency, and price-performance, showcasing the advantages of Graviton4 for modern database workloads.

Building a job search engine with PostgreSQL’s advanced search features

In today’s employment landscape, job search platforms play a crucial role in connecting employers with potential candidates. Behind these platforms lie complex search engines that must process and analyze vast amounts of structured and unstructured data to deliver relevant results. This post explores how to use PostgreSQL’s search features to build an effective job search engine. We examine each search capability in detail, discuss how they can be combined in PostgreSQL, and offer strategies for optimizing performance as your search engine scales.

Migrate io1 to io2 Block Express storage for Amazon RDS workloads using blue/green deployments

Amazon RDS provides two storage types: Provisioned IOPS SSD and General Purpose SSD. They differ in performance characteristics and price, which means that you can tailor your storage performance and cost to the needs of your database workload. In this post, we show how you can migrate from io1 to io2 Block Express Provisioned IOPS SSD storage.

Migrate Google Cloud SQL for PostgreSQL to Amazon RDS and Amazon Aurora using pglogical

In this post, we provide the steps to migrate a PostgreSQL database from Google Cloud SQL to RDS for PostgreSQL and Aurora PostgreSQL using the pglogical extension. We also demonstrate the necessary connection attributes required to support the database migration. The pglogical extension works for the community PostgreSQL version 9.4 and higher, and is supported on RDS for PostgreSQL and Aurora PostgreSQL as of version 12+.

Streamline code conversion and testing from Microsoft SQL Server and Oracle to PostgreSQL with Amazon Bedrock

Organizations are increasingly seeking to modernize their database infrastructure by migrating from legacy database engines such as Microsoft SQL Server and Oracle to more cost-effective and scalable open source alternatives such as PostgreSQL. This transition not only reduces licensing costs but also unlocks the flexibility and innovation offered by PostgreSQL’s rich feature set. In this post, we demonstrate how to convert and test database code from Microsoft SQL Server and Oracle to PostgreSQL using the generative AI capabilities of Amazon Bedrock.

Automate Amazon RDS for PostgreSQL major or minor version upgrade using AWS Systems Manager and Amazon EC2

In this post, we guide you through setting up automation for pre-upgrade checks and upgrading a fleet of Amazon RDS for PostgreSQL instances. In this solution, we use AWS Systems Manager to automate the Amazon RDS upgrade job.

Build an AI-powered text-to-SQL chatbot using Amazon Bedrock, Amazon MemoryDB, and Amazon RDS

Text-to-SQL can automatically transform analytical questions into executable SQL code for enhanced data accessibility and streamlined data exploration, from analyzing sales data and monitoring performance metrics to assessing customer feedback. In this post, we explore how to use Amazon Relational Database Service (Amazon RDS) for PostgreSQL and Amazon Bedrock to build a generative AI text-to-SQL chatbot application using Retrieval Augmented Generation (RAG). We’ll also see how we can use Amazon MemoryDB with vector search to provide semantic caching to further accelerate this solution.