Artificial Intelligence
Category: Amazon SageMaker Autopilot
Explaining Amazon SageMaker Autopilot models with SHAP
Machine learning (ML) models have long been considered black boxes because predictions from these models are hard to interpret. However, recently, several frameworks aiming at explaining ML models were proposed. Model interpretation can be divided into local and global explanations. A local explanation considers a single sample and answers questions like “Why does the model […]
Deploying your own data processing code in an Amazon SageMaker Autopilot inference pipeline
The machine learning (ML) model-building process requires data scientists to manually prepare data features, select an appropriate algorithm, and optimize its model parameters. It involves a lot of effort and expertise. Amazon SageMaker Autopilot removes the heavy lifting required by this ML process. It inspects your dataset, generates several ML pipelines, and compares their performance […]

