亚马逊AWS官方博客

AWS Localization

Author: AWS Localization

使用 Amazon Elastic Inference 降低 Amazon SageMaker PyTorch 模型的机器学习推理成本

PyTorch 是一个常见的深度学习框架,它使用动态计算图形。借助它,您可以使用命令语言和常用的 Python 代码轻松开发深度学习模型。推理是使用训练模型进行预测的过程。对于使用 PyTorch 等框架的深度学习应用程序,推理成本占计算成本的 90%。由于深度学习模型需要不同数量的 GPU、CPU 和内存资源,为推理选择适当的实例有难度。在一个独立的 GPU 实例上对其中一个资源进行优化通常会导致其他资源利用不足。因此,您可能要为未使用的资源付费。

Read More

利用深度强化学习实现金融决策自动化

机器学习 (ML) 已经常态化应用于各个行业,但除了简单的预测场景之外,还有更为复杂的决策制定场景,为了支持长期的战略性目标,人们有时会选择,甚至必须作出非最优的短期决策。利用一种叫做强化学习 (RL) 的 ML 模型,可以学习如何优化策略,从而根据长期目标制定系列决策。

Read More

Cinnamon AI 使用 Amazon SageMaker 托管 Spot 训练可节省 70% 的 ML 模型训练成本

开发人员需要不断对机器学习 (ML) 模型进行反复训练,才能够持续优化模型预测效果。模型训练时间在数分钟至数小时不等,也可能会花费多天才能完成,具体时长根据数据集大小而定。ML 开发是一个复杂、成本高的迭代过程。使用低成本的方式开展计算密集型工作对 ML 开发来说至关重要,这也是实现规模化的关键因素。

Read More

使用 Trinity Audio WordPress 插件将您的内容免费转换为音频

本博文由 Trinity Audio 的联合创始人兼首席执行官 Ron Jaworski 特约发表。用他们自己的话说,“Trinity Audio 是一个音频内容解决方案平台,可满足世界各地各种类型和规模的出版商和内容创建者,并且能够通过将读者转变为听众来帮助他们加入持续进行的音频革命行列中,从而创造当代受众非常期待的体验。”

Read More

利用 Amazon CodeGuru Profiler 调查性能问题

Amazon CodeGuru(预览版)能够分析应用程序的性能特征,并自动提供性能改善建议。Amazon CodeGuru Profiler 提供交互式可视化图形界面,以显示应用程序的运行时间耗费在什么地方。这些火焰图是功能强大的工具,可帮助您排查哪些代码方法造成延迟或使用过多 CPU 资源。

Read More

使用 Amazon SageMaker 标记可疑的医疗保险索赔

此解决方案使用 Amazon SageMaker,它可以帮助开发人员和数据科学家构建、训练和部署 ML 模型。Amazon SageMaker 是一项完全托管的服务,涵盖了 ML 的整个工作流,可以标记和准备数据、选择算法、训练模型、调整和优化模型以便部署、预测和执行操作。
可以使用Amazon SageMaker Jupyter Notebook 端到端应用此解决方案。有关更多信息,请参阅 GitHub 存储库。

Read More

发布 Amazon Rekognition 自定义标签

今天,Amazon Web Services (AWS) 宣布推出 Amazon Rekognition 自定义标签。借助 Amazon Rekognition 的这项新功能,客户可以建立自己的基于专业机器学习 (ML) 的图像分析能力,在其特定的用例中鉴别独特的对象和场景。例如,客户无需任何ML专长,在使用 Amazon Rekognition 来识别图像中的机器部件时,可以用少量添加了标签的图像集进行训练,即可鉴别出“涡轮增压器”和“变矩器”。客户不再需要从头开始训练模型,这意味着无需专业的机器学习知识以及数以百万计的高质量带标签图像,只需使用 Amazon Rekognition 自定义标签功能即可快速满足其独特的图像分析需求。

Read More

Amazon Web Services 为 BERT 和 Mask R-CNN 实现了最快的训练速度

BERT 和 Mask R-CNN 都是如今最流行的机器学习模型,前者用于自然语言处理 (NLP),后者用于图像识别。过去几个月来,AWS 大幅改进了底层基础设施、网络和机器学习 (ML) 框架和模型代码,从而实现了这两个模型训练速度的提高。现在我们可以宣布在云中实现了迄今最快的 TensorFlow、MXNet 和 PyTorch 框架的训练速度。借助这些硬件和软件优化,您现在可以以同样的速度和效率训练您的模型。

Read More