Artificial Intelligence
Speed ML development using SageMaker Feature Store and Apache Iceberg offline store compaction
Today, companies are establishing feature stores to provide a central repository to scale ML development across business units and data science teams. As feature data grows in size and complexity, data scientists need to be able to efficiently query these feature stores to extract datasets for experimentation, model training, and batch scoring. Amazon SageMaker Feature […]
Promote feature discovery and reuse across your organization using Amazon SageMaker Feature Store and its feature-level metadata capability
Amazon SageMaker Feature Store helps data scientists and machine learning (ML) engineers securely store, discover, and share curated data used in training and prediction workflows. Feature Store is a centralized store for features and associated metadata, allowing features to be easily discovered and reused by data scientist teams working on different projects or ML models. […]

