Artificial Intelligence
Optimize query responses with user feedback using Amazon Bedrock embedding and few-shot prompting
This post demonstrates how Amazon Bedrock, combined with a user feedback dataset and few-shot prompting, can refine responses for higher user satisfaction. By using Amazon Titan Text Embeddings v2, we demonstrate a statistically significant improvement in response quality, making it a valuable tool for applications seeking accurate and personalized responses.
Metadata filtering for tabular data with Amazon Bedrock Knowledge Bases
Amazon Bedrock is a fully managed service that offers a choice of high-performing foundation models (FMs) from leading artificial intelligence (AI) companies like AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, Stability AI, and Amazon through a single API. To equip FMs with up-to-date and proprietary information, organizations use Retrieval Augmented Generation (RAG), a technique that […]

