Getting started
Amazon SageMaker helps data scientists and developers to prepare, build, train, and deploy high-quality machine learning (ML) models quickly by bringing together a broad set of capabilities purpose-built for ML.
Introduction to Amazon SageMaker
Learn how to prepare, build, train, and deploy models with Amazon SageMaker.
VIDEO
Complete all the administrative tasks required to launch Amazon SageMaker Studio with just a few clicks.
TUTORIAL
In this tutorial, you use Amazon SageMaker Studio to build, train, deploy, and monitor an XGBoost model. We cover the entire machine learning (ML) workflow from feature engineering and model training to batch and live deployments for ML models.
DEVELOPER GUIDE
Follow this step-by-step guide to start using all the features of Amazon SageMaker Studio.
WEBINAR
In this on-demand tech talk, we show you how to quickly create new notebooks, upload data, train models, compare model results, and deploy models to production, all within Amazon SageMaker Studio.
Secure and compliant ML workflows with Amazon SageMaker
Ever wondered how to build a secure and compliant end-to-end ML workflow for Financial Services? Check out this video demonstration, where we address the common patterns and requirements required by highly regulated industries for their use cases with secure machine learning.
Build machine learning models
DEVELOPER GUIDE
Learn to build an ML model with the steps and resources outlined in this guide.
HANDS-ON LAB
Access a rich repository of SageMaker notebooks, on GitHub.
HANDS-ON LAB
Utilize algorithms built into Amazon SageMaker that are faster and cheaper than popular alternatives.
Train and tune machine learning models
Use the Train module to set up training environments with one click and optimize your model using automatic module tuning
TUTORIAL
Learn how to use Amazon SageMaker Studio to train, and tune a TensorFlow deep learning model.
DEVELOPER GUIDE
Read an overview of how to train machine learning models using Amazon SageMaker.
BLOG
Organize and track your training iterations efficiently with Amazon SageMaker Experiments. Training an ML model typically entails many iterations to isolate and measure the impact of changing data sets, algorithm versions, and model parameters. SageMaker Experiments helps you manage these iterations by automatically capturing the input parameters, configurations, and results, and identify the best performing experiment.
VIDEO
Training an ML model typically entails many iterations to isolate and measure the impact of multiple variables. In this video, learn how Amazon SagMaker Experiments can help you and track these iterations within the visual interface of SageMaker Studio.
HANDS-ON LAB
Try these examples of using hyperparameter tuning across different algorithms and deep learning frameworks.
TUTORIAL
Learn how to save up to 90% in training costs, using Amazon EC2 Spot instances with Managed Spot Training. Spot instances are space compute capacity and training jobs are automatically run when the spare capacity becomes available. Training runs are made resilient to interruptions caused by changes in capacity, allowing you to save cost when you have flexibility with when to run training jobs.
WEBINAR
In this on-demand tech talk, learn how to use Amazon SageMaker Experiments and how Amazon SageMaker Debugger improves model quality through better model training and tuning. You will see how to manage iterations by automatically capturing the input parameters, configurations, and results and automatically capturing real-time metrics during training such as training and validation and confusion matrices.
VIDEO
The ML training process is largely opaque. Learn how Amazon SageMaker Debugger makes the training process transparent by automatically capturing metrics, analyzing training runs, and detecting problems.
Deploy machine learning models
DEVELOPER GUIDE
Follow the step-by-step guide to deploy machine learning models on the highest performing infrastructure.
HANDS-ON LAB
Follow the examples on GitHub to use Amazon SageMaker and AWS Step Functions to automate the building, training, and deploying of custom machine learning models.
VIDEO
Learn how Amazon SageMaker Multi-Model Endpoints enable a scalable and cost-effective way to deploy ML models at scale using a single end point.
Additional resources
SDKs
Use APIs tailored to your programming language or platform to make it easy to use Amazon SageMaker in your applications.
Android
JavaScript
Node.js
Python
What's new
What’s New announcements are high-level summaries of launches and feature updates. Read Amazon SageMaker specific updates and other AWS announcements.
Amazon SageMaker related blogs
Learn more about Amazon SageMaker features