AWS HPC Blog
Run Celery workers for compute-intensive tasks with AWS Batch
Many applications leverage distributed task systems like Celery to handle asynchronous work. In this post, we describe how to handle compute-intensive Celery tasks using AWS Batch to scale the compute resources and run worker agents.
Explore costs of AWS Batch jobs run on Amazon EKS using pod labels and Kubecost
Today we show you how to get insights into the costs of running AWS Batch workloads on Amazon EKS using Kubernetes pod labels with Kubecost.
How AWS Batch developed support for Amazon Elastic Kubernetes Service
Today, we discuss AWS batch on Amazon EKS, and the initial motivation and design choices the team made when we developed the service, and some of the challenges to overcome.
BioContainers are now available in Amazon ECR Public Gallery
Today we are excited to announce that all 9000+ applications provided by the BioContainers community are available within ECR Public Gallery! You don’t need an AWS account to access these images, but having one allows many more pulls to the internet, and unmetered usage within AWS. If you perform any sort of bioinformatics analysis on AWS, you should check it out!
Rearchitecting AWS Batch managed services to leverage AWS Fargate
AWS service teams continuously improve the underlying infrastructure and operations of managed services, and AWS Batch is no exception. The AWS Batch team recently moved most of their job scheduler fleet to a serverless infrastructure model leveraging AWS Fargate. I had a chance to sit with Devendra Chavan, Senior Software Development Engineer on the AWS Batch team, to discuss the move to AWS Fargate and its impact on the Batch managed scheduler service component.
Encoding workflow dependencies in AWS Batch
This post covers the different ways you can encode a dependency between basic and array jobs in AWS Batch. We also cover why you may want to encode dependencies outside of Batch altogether using a workflow system like AWS Step Functions or Apache Airflow.
AWS Batch updates: higher compute utilization, AWS PrivateLink support, and updatable compute environments
In this post, I cover some of the recent updates to AWS Batch, including improvements to job placement, addition of AWS PrivateLink support, and the new capabilities to update your AWS Batch compute environments.
Choosing between AWS Batch or AWS ParallelCluster for your HPC Workloads
It’s an understatement that AWS has a lot of services (more than 200 at the time of this post!). We’re usually the first to point out that there’s more than one way to solve a problem. HPC is no different in this regard, because we offer a choice: customers can run their HPC workloads using AWS […]
Introducing AWS HPC Connector for NICE EnginFrame
Today we’re introducing AWS HPC Connector, a new feature in NICE EnginFrame that allows customers to leverage managed HPC resources on AWS. With this release, EnginFrame provides a unified interface for administrators to make hybrid HPC resources available to their users both on-premises and within AWS. In this post, we’ll provide some context around EnginFrame’s typical use cases, and show how you can use AWS HPC Connector to stand up HPC compute resources on AWS.
Supporting climate model simulations to accelerate climate science
The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). In collaboration with ASDI, AWS, and SilverLining, a nonprofit dedicated to ensuring a safe climate, the National Center for Atmospheric Research (NCAR) will run an ensemble of 30 climate-model simulations on AWS. The climate runs will simulate the Earth system over the period of years 2022-2070 under a median scenario for warming and make them available through the AWS Open Data Program. The simulation work will demonstrate the ability to use cloud infrastructure to advance climate models in support of robust scientific studies by researchers around the world and aims to accelerate and democratize climate science.








