AWS HPC Blog

Category: Best Practices

Create a Slurm cluster for semiconductor design with AWS ParallelCluster

Create a Slurm cluster for semiconductor design with AWS ParallelCluster

If you work in the semiconductor industry with electronic design automation tools and workflows, this guide will help you build an HPC cluster on AWS specifically configured for your needs. It covers AWS ParallelCluster and customizations specifically to cater to EDA.

Optimizing your AWS Batch architecture for scale with observability dashboards

AWS Batch customers often ask for guidance to optimize their architectures and make their workload to scale rapidly. Here we describe an observability solution that provides insights into your AWS Batch architectures and allows you to optimize them for scale and quickly identify potential throughput bottlenecks for jobs and instances.

Accelerating Genomics Pipelines Using Intel’s Open Omics Acceleration Framework on AWS

In this blog, we showcase the first version of Open Omics and benchmark three applications that are used in processing NGS data – sequence alignment tools BWA-MEM, minimap2, and single cell ATAC-Seq on Xeon-based Amazon Elastic Compute Cloud (Amazon EC2) Instances.

Building a Scalable Predictive Modeling Framework in AWS – Part 3

In this final part of this three-part blog series on building predictive models at scale in AWS, we will use the synthetic dataset and the models generated in the previous post to showcase the model updating and sensitivity analysis capabilities of the aws-do-pm framework.

Building a Scalable Predictive Modeling Framework in AWS – Part 2

In the first part of this three-part blog series, we introduced the aws-do-pm framework for building predictive models at scale in AWS. In this blog, we showcase a sample application for predicting the life of batteries in a fleet of electric vehicles, using the aws-do-pm framework.

Building a Scalable Predictive Modeling Framework in AWS – Part 1

Predictive models have powered the design and analysis of real-world systems such as jet engines, automobiles, and powerplants for decades. These models are used to provide insights on system performance and to run simulations, at a fraction of the cost compared to experiments with physical hardware. In this first post of three, we described the motivation and general architecture of the open-source aws-do-pm framework project for building predictive models at scale in AWS.