亚马逊AWS官方博客
Category: Artificial Intelligence
开发应用程序迁移方法以使用 Amazon Redshift 使您的数据仓库现代化
本文展示一款简单的应用程序,可供制药企业、医疗保健专业人士以及消费者通过药监局及国家卫生研究院等权威来源处查找有用信息。使用这套架构及相关代码库,您可以将这套解决方案整合至关于不良事件分析及报告的其他下游应用程序当中。我们希望本文能够帮助大家接触ML技术、提高ML采用率,同时改善患者的预后与护理质量。
使用 Amazon Comprehend Medical 以自然语言为基础查询药物不良反应与召回事件
本文展示一款简单的应用程序,可供制药企业、医疗保健专业人士以及消费者通过药监局及国家卫生研究院等权威来源处查找有用信息。使用这套架构及相关代码库,您可以将这套解决方案整合至关于不良事件分析及报告的其他下游应用程序当中。我们希望本文能够帮助大家接触ML技术、提高ML采用率,同时改善患者的预后与护理质量。
使用 Amazon Textract 与 Amazon Comprehend 从文档中提取自定义实体
机器学习与人工智能能够极大提升组织的敏捷水平,将原本只能手动完成的任务转为自动化流程,借此增强执行效率。在本文中,我们演示了一套端到端架构,可通过Amazon Textract与Amazon Comprehend提取候选人技能等自定义实体。本文还将大家讲解了如何使用Amazon Textract进行数据提取,以及如何使用Amazon Comprehend通过您的自有数据集训练自定义实体识别器,并借此实现自定义实体识别。这一流程可以广泛应用于各个行业,例如医疗保健与金融服务等。
使用 Amazon Translate 以 Office Open XML 格式翻译文档、电子表格与演示文稿
在本文中,我们探讨了如何通过异步批量翻译对DOCX格式的文档进行翻译。关于翻译电子表格与演示文稿,其过程与翻译DOCX文件相同。AWS提供的翻译服务Amazon Translate使用简单,且您只需要根据翻译的每种格式的文档中的字符数(包含空格)进行付费。您现在可以在支持批量翻译的所有区域内翻译Office文档。如果您还不熟悉Amazon Translate,不妨先从Free Tier免费套餐起步。此套餐将从您提交的第一项翻译请求开始,在随后的12个月内每月提供2百万个字符的免费翻译配额。
SNCF Réseau 和 Olexya 如何将 Caffe2 计算机视觉流水线任务迁移至 Amazon SageMaker 中的 Managed Spot Training
Amazon SageMaker支持从数据注释、到生产部署、再到运营监控的整个ML开发周期。正如Olexya与SNCF Réseau的工作所示,Amazon SageMaker具有良好的框架中立性,能够容纳各类深度学习工作负载及框架。除了预先为Sklearn、TensorFlow、PyTorch、MXNet、XGBoost以及Chainer创建配套Docker镜像与SDK对象以外,您也可以使用自定义Docker容器,几乎任何框架,如PeddlePaddle、Catboost、R以及Caffe2。
使用 Amazon Translate 自动翻译PPT
本文介绍了一套基于脚本的自动翻译解决方案,能够使用Amazon Translate将演示文稿中的文本翻译成多种语言。关于更多详细信息,请参阅什么是Amazon Translate。
使用 Amazon SageMaker Ground Truth, Amazon Comprehend 与 Amazon A2I 为基于 NLP 的实体识别模型设置人工审查
本文演示了如何使用Ground Truth NER为Amazon Comprehend自定义实体识别结果创建注释。我们还使用Amazon A2I以更新并改进Amazon Comprehend的低置信度预测结果。
基于 Amazon SageMaker 创建一套持久的定制化 R 环境
本文引导大家为Amazon SageMaker notebook实例创建自定义持久R环境。关于Amazon SageMaker上的R notebooks,请参阅Amazon SageMaker示例GitHub repo。关于创建基于R内核的Amazon SageMaker notebook实例的更多详细信息,请参考在Amazon SageMaker notebook实例上使用R代码博文。
使用 Amazon SageMaker 与 Deep Graph Library 在异构网络中检测欺诈活动
在本文中,我们讲解了如何根据用户交易与活动构建异构图,并使用该图及其他收集到的特征训练GNN模型,最终对交易的欺诈性做出预测。本文还介绍了如何使用DGL与Amazon SageMaker定义并训练具备高预测性能的GNN模型。关于此项目的完整实现以及其他GNN模型详细信息,请参见GitHub repo。
使用 Amazon Textract、Amazon Comprehend 以及 Amazon Lex 从发票中提取会话式洞见
本文介绍了如何在Amazon Lex中创建一款会话式聊天机器人,使用Amazon Textract从图像或PDF文档中提取文本,使用Amazon Comprehend从文本中提取洞见,并通过机器人实现与洞见的交互。本文中所使用的代码皆发布在GitHub repo 当中,供您随意使用及扩展。我们也期待了解您如何将这套解决方案应用于实际用例,请在评论区中分享您的观点与疑问。