亚马逊AWS官方博客

Category: Artificial Intelligence

使用 Amazon SageMaker 通过自定义数据集训练模型

对于刚上手机器学习的从业人员而言,业务需求所需要呈现的结果,往往不仅是用公开数据集就能够训练出合适的模型。我们往往只有少量的业务相关数据,甚至这些数据也需要从零开始收集整合,而这之后还需要进行数据清洗、数据打标签、特定数据格式转化等复杂的制作特定数据集的步骤,这些工作会阻塞住我们前进的脚步。除了容易在数据集上举步不前外,对于所需要数据量的误解也是另外一大阻碍因素。我们总认为进行机器学习需要“大量”的数据,究竟需要多少数据?在仅有少量数据时就不能训练出准确率较高的模型?本文试图从零开始,从制作自己的数据集开始,来探讨上面提出的问题。

Amazon SageMaker RL – Amazon SageMaker 提供的托管式强化学习

在 AWS re:Invent 2017 大会上发布的 Amazon SageMaker 旨在帮助客户快速构建、训练和部署 ML 模型。今天,随着 Amazon SageMaker RL 的推出,我们很高兴地将 Amazon SageMaker 的优势延伸到强化学习,让所有开发者和数据科学家都能更轻松地实现强化学习 – 不论其在 ML 领域的专业知识水平如何。

Amazon SageMaker Ground Truth — 构建高度准确的数据集并将添加标签的成本最高降低 70%

今天,大部分机器学习任务都使用一种被称为监管学习的方法:通过一种算法从带标签的数据集中学习模式或行为。带标签的数据集包含数据样本以及每个样本的准确答案,也就是“地面实况”。根据所拥有的问题不同,人们可以使用带标签的图像(“这是一只狗”、“这是一只猫”)、带标签的文本(“这是垃圾邮件”、“这不是”)等等。

Amazon Comprehend Medical —— 针对医疗保健客户的自然语言处理

作为肠胃科医生和皮肤科医生的后代,在我的成长过程中一直充满了各种晦涩难懂的对话,包含无穷无尽的复杂医学术语:人类解剖学、外科手术、药物名称……以及它们的缩略词。充满求知欲的小孩想知道他的父母是否对这些奇怪的话语感到难以理解,这真的是一段有趣的经历。

因此,非常高兴能发布 Amazon Comprehend Medical,这是 Amazon Comprehend 针对医疗保健客户的延伸

Amazon SageMaker Automatic Model Tuning:利用机器学习支持机器学习

Amazon SageMaker Automatic Model Tuning 已正式发布。Automatic Model Tuning 消除了为了搜索超参数空间,以获得更精确的模型,而必须执行的无差异化繁重工作。在训练和校正机器学习模型时,开发人员和数据科学家能够利用这项功能节省大量时间和工作。超参数校正任务会根据已完成的训练任务的结果,启动使用不同超参数组合的多项训练任务。SageMaker 根据贝叶斯优化训练“元”机器学习模型,为我们的训练任务推断超参数组合。我们稍微深入地探索一下这方面的内容。

适用于 WordPress 的 Amazon Polly 插件更新 – 内容翻译和语音化

今年早些时候,我向大家介绍了如何使用 Amazon Polly 插件让您的 WordPress 博客变有声,并详细演示了安装、配置和使用适用于 WordPress 的 Amazon Polly 插件的步骤。今天,我们增加了将您的内容翻译为一个或多个语言,以及为每个翻译版本生成音频版本的能力,让这个插件变得更为强大。翻译功能将使用 Amazon Translate,这是一款中性的机器翻译服务,是我们机器学习服务组合的组成部分。

Amazon SageMaker 增加批量转换功能和适用于 TensorFlow 容器的管道输入模式

AWS 推出了两个新的 Amazon SageMaker 功能:一是批量转换功能,这是一种新的批量推断功能,客户可以通过它对 PB 级的数据进行非实时场景预测;二是适用于 TensorFlow 容器的管道输入模式。SageMaker 依然是 AWS 最受欢迎的服务之一,此博客和机器学习博客都对它进行了非常广泛的介绍。事实上,要赶上 SageMaker 团队快速的创新步伐是一件较为困难的事情。自上一篇有关 SageMaker 自动模型调整和超参数优化功能的博客发布以来,该团队已经推出了 4 种新的内置算法和许多的新功能。下面我们来看新推出的批量转换功能。