亚马逊AWS官方博客

Tag: TensorFlow

使用 Deep Learning AMI 快速实现 CUDA,cuDNN 和深度学习框架版本兼容

AWS Deep Learning AMI 为机器学习从业者和研究人员提供基础设施和深度学习环境。您可以快速启动预装了主流深度学习框架的 Amazon EC2 实例,并且快速地切换 CUDA 版本实现与深度学习框架的兼容,轻松构建深度学习环境。从而让我们将更多的时间用于尝试新算法,学习新技术。

亚马逊云科技云原生架构演进

云原生是这两年讨论的比较火的话题,并且逐渐成为应用部署的主流方式。云原生是一种构建和运行应用程序的方法,应用程序从设计之初即考虑到云的环境,充分利用和发挥云平台的弹性自动化优势,在云上以最佳方式运行。

使用 TensorBoard 实现 TensorFlow 训练作业可视化

在本文中,展示了使用TensorBoard可视化TensorFlow训练作业,以Amazon S3作为日志存储。您可以使用这套解决方案以及对应的示例notebook,通过Amazon SageMaker构建和训练模型,并运行超参数调优作业。此外,您可以使用TensorBoard对不同训练作业中的超参数进行比较,生成并显示分类器混淆矩阵,剖析并可视化训练作业的性能。

使用 Amazon SageMaker 运行基于 TensorFlow 的中文命名实体识别

利用业内数据构建知识图谱是很多客户正在面临的问题,其中中文命名实体识别(Named Entity Recognition,简称NER)是构建知识图谱的一个重要环节。我们在与客户的交流中发现,现有的NER工具(比如Jiagu)对于特定领域的中文命名实体识别效果难以满足业务需求,而且这些工具很难使用自定义数据集训练。因此客户迫切想使用业内最先进的算法在行业内数据集上进行训练,以改进现有NER工具的不足。本文将介绍如何使用Amazon SageMaker运行基于TensorFlow的中文命名实体识别。

使用 Amazon SageMaker 运行分布式 TensorFlow 训练

TensorFlow 是广泛被用于开发大型深度神经网络 (DNN) 的开源机器学习 (ML) 库,此类 DNN 经常会在多个主机上使用多个 GPU进行分布式训练。Amazon SageMaker 是一项托管服务,能够简化 ML 的工作流程,包括集成了主动学习的数据标记、超参数优化、模型分布式训练、监控训练进展、部署模型并提供自动扩展的 RESTful 服务集群、以及对并发 的ML 多项实验进行集中式管理等。
本文将重点讨论如何使用 Amazon SageMaker 进行基于TensorFlow的分布式训练。