Amazon Web Services ブログ

Julien Simon

Author: Julien Simon

As an Artificial Intelligence & Machine Learning Evangelist for EMEA, Julien focuses on helping developers and enterprises bring their ideas to life.

Amazon SageMaker Ground Truth が、ラベル付けワークフローを簡素化し続ける

AWS re:Invent 2018 で発表された Amazon SageMaker Ground Truth は Amazon SageMaker の機能であり、機械学習システムのトレーニングに必要なデータセットの効率的で高精度なラベル付けをお客様が簡単に行えるようにします。 Amazon SageMaker Ground Truth の簡単なまとめ Amazon SageMaker Ground Truth は、機械学習用の高精度なトレーニングデータセットをすばやく構築するお手伝いをします。SageMaker Ground Truth を使用すると、パブリックおよびプライベートでラベル付けを行う人間の作業者への簡単なアクセスと、一般的なラベル付けタスクのための組み込みのワークフローとインターフェースが提供されます。さらに、SageMaker Ground Truth は自動データラベル付けを使用してラベル付けのコストを最大 70% 削減します。自動データラベル付けは、人間がラベルを付けたデータから Ground Truth をトレーニングし、サービスが独自にデータにラベルを付けることを学習することによって機能します。 Amazon SageMaker Ground Truth は以下のデータセットの構築をお手伝いします。 テキスト分類。 画像分類 (画像を特定のクラスに分類する)。 物体検出 (画像内の物体の位置をバウンディングボックスとともに取得)。 セマンティックセグメンテーション (ピクセル精度で画像内の物体の位置を取得)。 文字通りお客様が何でも注釈を付けることができるカスタムのユーザー定義タスク。 ラベラーのチームを使用して、ラベル付けの要求を直接ラベラーにルーティングすることを選択できます。あるいは、スケールアップが必要な場合は、組織外のラベラーと連携するためのオプションが Amazon SageMaker Ground Truth コンソールに直接表示されます。Amazon Mechanical Turk との統合により、50 […]

Read More