Amazon Web Services ブログ

Category: Amazon SageMaker

Coca-Cola Andina が AWS 上の Thanos でオペレーションの可視性を強化

飲料会社の Coca-Cola Andina は、生産性、効率性、顧客満足度を向上させるために、データからより良い洞察を引き出すには、クラウドが鍵であることに気付きました。そのため、同社はオンプレミスのデータストア全体を、アマゾンウェブサービス(AWS)に新しく構築したデータレイクに移行しました。

Amazon SageMaker Canvas でノーコード機械学習を行うために Google Cloud Platform BigQuery からデータをインポートする

現代のクラウド中心のビジネス環境では、データが複数のクラウドやオンプレミスのシステムに分散していることが多くあります。この断片化は、お客様が機械学習 (ML) イニシアチブとして、データを統合し、分析する作業を複雑にしています。

本稿では、さまざまなクラウド環境の中でも Google Cloud Platform (GCP) BigQueryに焦点を当て、データソースを移動することなく、データを直接抽出するアプローチをご紹介します。これにより、クラウド環境間でデータ移動の際に発生する複雑さとオーバーヘッドを最小限に抑えることができるため、組織は ML プロジェクトで様々なデータ資産にアクセスし、活用できるようになります。

Llama 3.x モデルのファインチューニングを Amazon SageMaker Pipelines の新しいビジュアルデザイナーで自動化する

Amazon SageMaker Pipelines のビジュアルデザイナーを使用して、生成AIモデルのトレーニング、ファインチューニング、評価、登録、デプロイを行うエンドツーエンドのワークフローを作成できるようになりました。SageMaker Pipelines は、基盤モデルの運用 (FMOps) のために特別に構築されたサーバーレスワークフロー オーケストレーションサービスです。専門的なワークフローフレームワークを学ぶ必要なく、モデル開発やノートブックの大規模実行を自動化し、プロトタイプから本番環境までの生成 AI ジャーニーを加速します。データサイエンティストや機械学習 (ML) エンジニアは、大規模言語モデル (LLM) の継続的なファインチューニングやスケジュールされたノートブックジョブワークフローなどのタスクにパイプラインを使用できます。パイプラインは、数万のワークフローを並列で実行するようにスケールアップし、ワークロードに応じて自動的にスケールダウンします。