Amazon Web Services ブログ

Category: Artificial Intelligence

リアルタイム予測のために Amazon SageMaker を使用して Amazon DynamoDB でデータを分析する

 世界で数多くの企業が、Amazon DynamoDB を使って、ユーザー対話履歴データを保存およびクエリしています。DynamoDB は、1 桁台のミリ秒の安定したレイテンシーを必要とするアプリケーションで使用されている、高速の NoSQL データベースです。 たいていは、顧客は Amazon S3 に格納されているテーブルのコピーを分析することで、DynamoDB 内の貴重なデータを詳細な情報に変換する必要があります。これにより、低いレイテンシーのクリティカルパスから分析クエリが分離します。このデータは、顧客の過去の行動を理解し、将来の行動を予測し、下流のビジネス価値を生み出す主要な情報源となり得るのです。スケーラビリティと可用性が高いという理由で、顧客は DynamoDB の使用へ切り替えるということがよくあります。立ち上げが上手くいった後、多くの顧客が DynamoDB のデータを使用して、今後の行動を予測したり、個別の推奨事項を提供したりしたいと考えます。 DynamoDB は、レイテンシーの低い読み書きに適していますが、DynamoDB データベース内のすべてのデータをスキャンし、モデルをトレーニングするのは現実的ではありません。この記事では、AWS Data Pipeline によって Amazon S3 にコピーされた DynamoDB テーブルデータを使って、顧客の行動を予測する方法を解説します。さらにこのデータを使用して、Amazon SageMaker で顧客に個別の推奨事項を提供する方法も説明します。Amazon Athena を使用して、データに対してアドホッククエリを実行することもできます。DynamoDB は最近、オンデマンドバックアップをリリースし、パフォーマンスに影響を与えずに完全なテーブルバックアップを作成しました。しかし、この記事には適していないので、代わりに AWS Data Pipeline が管理バックアップを作成し、他のサービスからアクセスできるようにする方法を紹介します。 これを行うため、Amazon Data Pipeline で DynamoDB バックアップファイル形式を読み取る方法について説明します。Amazon S3 のオブジェクトを Amazon SageMaker が読み取れる CSV 形式に変換する方法についてもお話しします。加えて、Amazon Data Pipeline を使用して、定期的なエクスポートと変換をスケジュールする方法も説明します。この記事で使用するサンプルデータは、「Bank Marketing Data […]

Read More

Amazon SageMaker Object2Vec の概要

このブログ記事では、高次元オブジェクトの低次元高密度埋め込みを学ぶことができる、高度にカスタマイズ可能な新しい多目的アルゴリズムである Amazon SageMaker Object2Vec アルゴリズムを紹介します。 埋め込みは、機械学習 (ML) における重要な特徴工学技術です。高次元のベクトルを低次元の空間に変換し、大きな疎ベクトル入力で機械学習を行いやすくします。また、埋め込みは、類似のアイテムを低次元空間の近くに配置することによって、基礎となるデータのセマンティクスも取得します。これにより、下流のモデルのトレーニングで特徴がより効果的になります。よく知られている埋め込みテクニックの 1 つに Word2Vec があり、これは単語の埋め込みを提供します。センチメント分析、ドキュメント分類、自然言語理解など、多くのユースケースで広く使用されています。特徴空間における単語の埋め込みの概念表現については、次の図を参照してください。 図 1: Word2Vec の埋め込み: 意味的に類似している単語は、埋込み空間内で互いに近くに位置しています。 単語の埋め込みに加えて、文章、顧客、製品など、より汎用的なオブジェクトの埋め込みを学びたいユースケースもあります。これは、情報検索、製品検索、商品照合、類似性に基づく顧客プロファイリングのため、または他の教師ありタスクの入力として実用的なアプリケーションを構築できるようにするためです。これが、Amazon SageMaker Object2Vec が導入された場所です。このブログ記事では、それが何であるか、それがどのように機能するか、いくつかの実用的なユースケースについて議論し、Object2Vec を使ってそうしたユースケースを解決する方法を紹介します。 仕組みの説明 埋め込みは、元の空間内のオブジェクトのペアの間の関係の意味が埋め込み空間内で保持されるように学習されます。したがって、学習された埋め込みを使用して、オブジェクトの最近傍を効率的に計算し、低次元空間内での関連オブジェクトの自然クラスターを視覚化することができます。さらに、埋め込みは、分類または回帰のような下流の教師ありタスクにおける対応するオブジェクトの特徴として使用することもできます。 Amazon SageMaker Object2Vec のアーキテクチャは、以下の主要コンポーネントで構成されています。 2 つの入力チャネル—2 つの入力チャネルが、同じタイプまたは異なるタイプのオブジェクトのペアを入力として受け取り、それらを独立したカスタマイズ可能なエンコーダーに渡します。 入力オブジェクトの例としては、シーケンスのペア、トークンのペア、シーケンスとトークンのペアがあります。 2 つのエンコーダー—エンコーダーは、それぞれのオブジェクトを固定長の埋め込みベクトルに変換します。 次に、ペア内のオブジェクトのエンコードされた埋め込みがコンパレータに渡されます。 コンパレータ—コンパレータは埋め込みを異なる方法で比較し、ユーザーによって指定された各関係について、ペア内のオブジェクトの関係の強さに対応するスコアを出力します。出力スコアの例は、オブジェクトのペア間の強い関係を示す 1、または弱い関係を表す 0 などとなります。 トレーニング時に、トレーニング損失関数は、モデルによって予測された関係と、トレーニングデータでユーザーによって指定された関係との間の差異を最小にします。モデルをトレーニングした後、トレーニングされたエンコーダーを使用して、新しい入力オブジェクトを固定長の埋め込みに変換することができます。Object2Vec のアーキテクチャ図とアーキテクチャの各部の説明は次のとおりです。 サポートされている入力タイプ、エンコーダー、損失関数 自然なこととして、Object2Vec は現在、integer-id として表されたシングルトン離散トークンと integer-id のリストとして表現された離散トークンのシーケンスを入力としてサポートしているため、入力データをサポートされている形式に変換するために前処理が必要です。それぞれのペアのオブジェクトは、互いに非対称であることもあります。たとえば、(トークン、シーケンス) ペア、(トークン、トークン) ペア、(シーケンス、シーケンス) ペアのいずれかです。トークンの場合、互換性のあるエンコーダーとして簡単な埋め込みをサポートしていますが、トークンのシーケンスの場合は、平均プール埋め込み、階層型畳み込みニューラルネットワーク (CNN)、多層双方向長時間短期記憶 ( BiLSTM) ベースのリカレントニューラルネットワークをエンコーダーをサポートします。それぞれのペアの入力ラベルは、ペア内のオブジェクト間の関係を表すカテゴリラベルであってもよいし、2 つのオブジェクト間の類似性の強さを表す評価またはスコアであってもかまいません。カテゴリラベルの場合はクロスエントロピー損失関数をサポートし、評価/スコアベースのラベルの場合は平均二乗誤差 (MSE) 損失関数をサポートしています。 […]

Read More

Amazon SageMaker を使用した K-means クラスタリング

Amazon SageMaker は、さまざまな問題の種類で使用できる組み込み機械学習 (ML) アルゴリズムを複数提供しています。これらのアルゴリズムは、高性能でスケーラブルな機械学習を提供し、速度、スケール、精度が最適化されています。 これらのアルゴリズムを使用して、ペタバイト規模のデータを学習できます。これらは、利用可能な他の実装の最高 10 倍のパフォーマンスを提供するように設計されています。このブログ記事では、教師なし学習の問題である k-means について探っていきます。さらに、Amazon SageMaker の組み込み k-means アルゴリズムの詳細も説明します。 k-means とは? k-means アルゴリズムは、グループのメンバーがお互いにできる限り類似し、他のグループメンバーとできる限り異なるようなデータ内の離散グループを探します (以下の図を参照)。アルゴリズムで類似性を決定するために使用する属性を定義します。  k-means を定義するもう 1 つの方法は、クラスター内のすべての点が、他の中心よりもその中心に近い距離になるように、与えられたレコードセットに対して、k クラスター中心を見つけるクラスター問題です。 与えられたデータセットを示すこの図では、赤、青、緑の 3 つの明確なクラスターが見えます。各クラスターにはクラスター中心があります。各クラスターの点は、他のクラスター中心より、割り当てられているクラスター中心に空間的に近いことに注意してください。  数学的には、以下のように解釈できます。 前提条件: S={x1…xn}、次元 d の n ベクトルのセット S と整数 k 目標: 以下の式を最小化する、k クラスターセンターのセット C={µ1… µk } を探します。 k-means を使う場所  k-means アルゴリズムは、明示的にラベル付されていない、大きなデータセットのパターンまたはグループを見つけることに適しています。さまざまなドメインでのいくつかのユースケースを紹介します。 E コマース 購入履歴またはクリックストリームアクティビティで顧客を分類。 ヘルスケア 病気のパターン検出または成功する治療シナリオ。 画像検出で類似画像をグループ化する。 金融 データセットの異常検知により、不正取引を検出。例えば異常な購入パターンによるクレジットカード詐欺の検出。 […]

Read More

AWS、ヘルスケア顧客向けの HIPAA 適格 machine learning サービスを拡大

 今日 AWS は、Amazon Translate、Amazon Comprehend、そしてAmazon Transcribe が米国版になったことを発表しました。1966 年の健康保険の携帯性と説明責任に関する法律 (HIPAA) 対象サービス。この発表は、HIPAA の対象となる AWS 人工知能サービスである Amazon Polly、Amazon SageMaker、そして Amazon Rekognition の数を増やしています。これらのサービスを使用することで、医療業界の AWS 顧客は、データ見識を活用し machine learning (ML) の力を利用することで、プロバイダーと患者にとってより良い成果をもたらすことができます。 ヘルスケア顧客をサポートするために、AWS HIPAA の対象となるサービスは、対象となる事業体および HIPAA の対象となる事業者が保護された健康情報の処理、保守、保管に安全な AWS 環境を使用することを可能にします。NextGen Healthcare、Omada Health、Verge Health、そして Orion Health などのヘルスケア企業では、既に多数の患者の記録を分析するために、AWS 上の HIPAA ワークロードが実行されています。 HIPAA 対象サービスのリストに Amazon Translate、Amazon Transcribe、そして Amazon Comprehend を追加することで、顧客はこれらの AWS ML サービスを活用して、顧客サポートの合理化と患者エンゲージメントの向上を図ることができます。顧客はこれら 3 つのサービスを利用して、以下の […]

Read More

グラフ化なら、おまかせください (パート 1 – 航空ルートの事例)

Amazon Neptune に関する記事を複数回に分けてお届けします。本シリーズ記事で、グラフアプリケーションデータセットと、多数の異なるドメインおよび問題空間から取り出されたクエリを探求します。 Amazon Neptune は高速で信頼性が高い完全マネージド型グラフデータベースで、高度に連結されたデータの保存およびクエリ実行のために最適化されています。高度に連結されたデータを使用するオンラインアプリケーションでは、接続をナビゲートし、エンティティ同士のリレーションシップの強度、重要性または品質を活用できるような接続性能がクエリの仕事量で求められますが、まさに理想的な用途と言えます。皆さんは、こんな問いかけに遭遇したことがおありだと思います。 私たちに共通の友人や仲間はいる? あるネットワークエレメント、たとえばルーターやスイッチが故障すると、自分のネットワーク内でその影響がおよぶアプリケーションやサービスはどれ? ネットワークに最重要顧客用の冗長性はある? 2 つの駅を地下道を使って行き来する最短ルートはどれ? このお客様に次に買うもの、次に見るもの、次に聞くものをあなたがすすめるとしたら、何を? ユーザーがアクセスしたり変更したりする権限がある製品、サービス、サブスクリプションはどれ? この荷物を A 地点から B 地点に届けるのに最安または最速の方法は? 銀行または保険会社に共謀して詐欺をはたらきそうな連中グループはどれ? これで、高度に連結されたデータの管理および意味を理解する必要性にすでにお気づきだと思います。 本シリーズ記事はまず、世界のエアラインの運航ネットワークをモデリングしたオープンソースの航空路データセットで始めることにします。このデータセットには Practical Gremlin というブックが付属しています。 本シリーズ記事の事例はすべて、Analyze Amazon Neptune Graphs using Amazon SageMaker Jupyter Notebooks で記述されている Amazon SageMaker および Neptune の統合ソリューションを使用した Jupyter ノートブックとして提供します。各ノートブックには、サンプルデータおよびクエリ、ならびにデータモデル上の解説と本アプリケーションのユースケースに対応するクエリ設計テクニックが含まれています。 航空路データセットの起動 次の表で、[Launch Stack] ボタンの1つを選択して、AWS CloudFormation コンソールから Neptune-SageMaker スタックを起動します。チェックボックスを選択して、AWS CloudFormation が IAM リソースを作成することを確認します。 次に、[Create] を選択します。 […]

Read More

Amazon SageMaker で増分学習を簡単に実行する

 データ科学者および開発者は、Amazon SageMaker で増分学習を簡単に実行できるようになりました。増分学習は、既存のモデルの知識を新しいデータでさらにトレーニングすることによって拡張する機械学習 (ML) 技術です。今日から、Amazon SageMaker 組み込みビジュアル認識アルゴリズム、画像分類とオブジェクト検出のどちらもが、増分学習をすぐにサポートできるようになります。したがって、新しいデータのモデルトレーニングを開始する前に、AWS マネジメントコンソールまたは Amazon SageMaker Python SDK API を使用して、既存の Amazon SageMaker ビジュアル認識モデルを簡単にロードすることができます。 概要 増分学習は、既存の機械学習モデルの知識を新しいデータでさらにトレーニングすることによって継続的に拡張する技術です。したがって、訓練の開始時には、最初に無作為に初期化するのではなく、以前トレーニングを実行して得られたモデルの重みをロードしてから、新しいデータでモデルをさらにトレーニングし続けます。このようにして、以前トレーニングを実行してモデルが得た知識を保持し、それをさらに拡張します。これは、すべてのトレーニングデータに同時にアクセスすることができず、データはバッチ単位で経時的に取得し続ける場合に役立ちます。この学習テクニックを使用して、新しいトレーニングデータでモデルを再トレーニングするときに時間を節約し、リソースを計算することもできます。 このブログ記事では、Amazon SageMaker の増分学習機能を使用して転移学習を実行する方法についても説明します。説明する際は、既存のモデルをシェルフから取り出して使用します。モデルズーから画像分類モデルを選択し、新しい分類タスクを実行するためのモデルをトレーニングする出発点として使用します。転移学習は、特定の機械学習タスクに対して最先端のリファレンスを実装した上で新しいモデルを構築することを可能にします。これは、深く複雑なネットワークを最初からトレーニングするのに十分なデータがない場合にも役立ちます。 では、例を見てみましょう。 Amazon SageMaker の組み込みアルゴリズムを使用してビジュアル認識モデルを段階的にトレーニングする Amazon SageMaker のビジュアル認識アルゴリズム、画像分類とオブジェクト検出の両方で、増分学習をサポートするサンプルノートブックを用意しました。次に、Image Classification ノートブックのコードスニペットを示します。初めて Amazon SageMaker Image Classification モデルをトレーニングする場合、ノートブックにはステップバイステップの手順が記載されています。この例では、Amazon SageMaker で以前にトレーニングした既存の Image Classification モデルが既にあるとします。 ステップ 1: 既存の Amazon SageMaker Image Classification モデルを使用するための入力チャネルを定義する。 Amazon SageMaker チャネルは、トレーニングアルゴリズムが使用できる名前付き入力データソースです。この入力チャネルは “model” という名前でなければならず、既存モデルの […]

Read More

Amazon SageMaker ノートブックインスタンスのためのライフサイクル設定の更新

Amazon SageMaker では顧客が更新された API を使用して、ノートブックインスタンスのライフサイクル設定を更新するか、関連付けを解除できるようになりました。 ノートブックインスタンスを停止して、ノートブックインスタンスのライフスパンの任意の時点で UpdateNotebookInstance API を使用することで、必要に応じて、ライフサイクル設定を関連付けるか、切り替えるか、または無効にすることができます。 ライフサイクル設定 は、ノートブックインスタンスでデータ科学ワークスペースを構築するときに必要なセットアップを整理して、自動化するときに便利です。 ノートブックインスタンスが開始するたびに、タスクのリストを実行できます。ライフサイクル設定を使用して、ノートブックインスタンスにパッケージやサンプルノートブックをインストールするか、データを事前ロードするか、ネットワークやセキュリティを設定するか、シェルスクリプトを使用してそれをカスタマイズすることができます。ライフサイクル設定を作成した後で、それを複数インスタンスで使用するか、将来の使用のために保存することができます。 以前、ノートブックインスタンスを初めて作っているときに割り当てた1つである場合のみ、ライフサイクル設定を使用できます。また、ノートブックインスタンスを削除することによってのみ、ライフサイクル設定を無効にできます。UpdateNotebookInstance API を使用して、ノートブックインスタンスのこれらのライフサイクル設定を 更新するか、関連付けを解除できるようになりました。 AWS コンソールのライフサイクル設定を更新する方法は、次のとおりです。 まず、設定の更新のために、実行中のインスタンスを停止する必要があります。それを停止した後で、設定の更新が有効になったことがわかります。 Update setting (設定の更新)をクリックして、メニューを使用してライフサイクル設定に進み、既存の設定を切り離すか、別のものに置き換えます。 API 要求パラメータを示す例は、以下のとおりです。 { “DisassociateLifecycleConfig”: boolean, “InstanceType”: “string”, “LifecycleConfigName”: “string”, “NotebookInstanceName”: “string”, “RoleArn”: “string” } パラメータの詳細な説明については、ここに示した Amazon SageMaker API ドキュメンテーションページにアクセスできます。https://docs.aws.amazon.com/sagemaker/latest/dg/API_UpdateNotebookInstance.html.   著者について Erkan Tas は、Amazon SageMaker のシニアテクニカルプロダクトマネージャーです。彼は、AWS プラットフォームを使用して、人工知能を簡単に、アクセス可能に、スケーラブルにするという役割を担っています。また、彼は船乗りであり、科学と自然を崇拝し、碁やストラトキャスターのプレイヤーでもあります。        

Read More

Amazon SageMaker でノートブックのボリュームサイズを最大 16 TB までカスタマイズできます

 Amazon SageMaker は大量のデータを保存するために必要なときに、ノートブックストレージボリュームをカスタマイズできるようになります。 ノートブックインスタンスに適切なストレージボリュームを割り当てることは、Machine Learning モデルを開発する際には重要です。そのストレージボリュームを使用して、大量のデータセットを処理するか、操作に使用する他のデータを一時的に保存することができます。 Amazon SageMaker で作成したすべてのノートブックインスタンスのデフォルトストレージボリュームは、5 GB に設定されています。5 GB から 16384 GB まで、1 GB の増分値で選択できます。 Amazon SageMaker コンソールを使用してノートブックを作成するとき、ストレージボリュームを定義できます。 ここでは、ニーズに合わせて、GB 単位でボリュームサイズを編集する必要があります。 結論 ニーズに応じて、ノートブックインスタンスのストレージボリュームをカスタマイズします。Amazon SageMaker のドキュメントを参照して、ノートブックインスタンスを作成して、使用する方法の詳細についてご覧ください。   著者について Erkan Tas は、Amazon SageMaker のシニアテクニカルプロダクトマネージャーです。彼は、AWS プラットフォームを使用して、人工知能を簡単に、アクセス可能に、スケーラブルにするという役割を担っています。また、彼は船乗りであり、科学と自然を崇拝し、碁やストラトキャスターのプレイヤーでもあります。        

Read More

AWS PrivateLink エンドポイントを使用することで、Amazon VPC から Amazon SageMaker ノートブックに直接アクセスする

Amazon SageMaker は、AWS PrivateLink を ノートブックインスタンスに対してサポートするようになりました。 この記事では、Amazon SageMaker ノートブックへの接続を確保するために、AWS PrivateLink をセットアップする方法を示します。 HIPAA または PCI などの規制へのコンプライアンスを維持するために、情報がインターネットを経由しないようにすることが必要になることがあります。 さらに、公共インターネットへのデータの露出を防止することで、ブルートフォースや分散サービス拒否攻撃などの脅威ベクトルの可能性が減少します。 AWS PrivateLink は、公共インターネットへのデータの露出を排除することにより、クラウドベースのアプリケーションと共有するデータのセキュリティを簡素化します。複数の VPC、AWS サービス、オンプレミスアプリケーションの間のプライベート接続を可能にします。AWS PrivateLink により、プライベートネットワークで直接、ホストされる場合と同様に、お使いのサービスが機能します。 AWS PrivateLink を使用してAmazon SageMaker APIと予測呼び出しを保護するため、以前、API オペレーションとランタイムのための PrivateLink サポートを導入しました。 AWS PrivateLink を使用して、ノートブックインスタンスへの接続も同様に保護することができるようになります。 AWS PrivateLink を介して Amazon SageMaker ノートブックを使用するために、Amazon Virtual Private Cloud (VPC) エンドポイントをセットアップする必要があります。 AWS PrivateLink は、インターフェイス VPC エンドポイントを使用することで、スケール自在な方法で VPC からすべての Amazon SageMaker API オペレーションにプライベートにアクセスすることができます。VPC エンドポイント は、プライベート IP アドレスをもつサブセットの Elastic Network Interface […]

Read More

CSVデータセットのPipeモードを使って、Amazon SageMaker内蔵アルゴリズムでトレーニングがより早く

Amazon SageMakerに内蔵されたアルゴリズムはPipeモードをサポートし、Machine learning (ML)モデルをトレーニングしている間、Amazon Simple Storage Service (S3)からCSV形式でデータセットを取得しAmazon SageMakerへ取り込みます。 モデルのトレーニングを進めながら、データはPipe入力モードでアルゴリズムコンテナに直接流れます。トレーニングを開始する前にデータをローカルの Amazon Elastic Block Store (EBS)の容量でダウンロードするファイルモードとは異なります。Pipeモードを利用すると、トレーニングはより早く、かなり少ないディスク容量でより速く終了することができます。Machine learningモデルをトレーニングする全体的なコストを削減することができます。3.9GB CSVデータセットのAmazon SageMakerのLinear Learnerアルゴリズムで、回帰モデルのトレーニングに利用した内部基準では、ファイルモードに代わりPipeモードを利用した場合、モデルのトレーニングに費やす時間は全体的に40%も削減される例がありました。Pipeモードと利点の詳細についてはブログの掲示板をご覧ください。 Amazon SageMakerの内蔵アルゴリズムでPipeモードを利用する 本年度初頭に内蔵Amazon SageMakerアルゴリズムで利用するPipe入力モードが初めて発表された時は、protobuf recordIO形式のダータのみをサポートしていました。高処理のトレーニングジョブに特化した特殊な形式です。Pipe入力モードの持つ利点を、CSV形式のトレーニングデータセットでも活用できるようになりました。次のAmazon SageMaker内蔵アルゴリズムでは、Pipe入力モードを使ったCSV形式のデータセットによるトレーニングを全面的にサポートしています: 主成分分析 (PCA) K-Meansクラスタリング K-Nearestネイバー Linear Learner (分類と回帰) ニューラルトピックモデリング ランダムカットフォレスト この新しい機能をトレーニングジョブで利用するためには、通常通りCSVデータベースのAmazon S3の位置を指定し、入力モードで「File」の代わりに「Pipe」を選択します。データ形式やコードの変更をする必要もなく、CSVデータセットはシームレスに流れてきます。 CSVの最適化Pipeモードを使ったより迅速なトレーニング CSV形式でデータセットに新しく実行されるPipeモードは、高度に最適化された高処理を可能にします。Amazon SageMaker Linear Learnerアルゴリズムを合成CSVデータセット上でトレーニングし、Pipe入力モードを使うとパフォーマンスが向上することを実証します。 初のデータセットである3.9GB CSVファイルは、200万個の記録を保有し、それぞれの記録は100個のカンマで切り離された単精度浮動小数点数でした。次はバッチサイズが1000でAmazon SageMaker Linear Learnerアルゴリズムをトレーニングしている間の、PipeモードとFileモードの全体的なトレーニングジョブ実施時間とモデルのトレーニング時間を比較したものです。 ご覧のようにCSVデータセットでPipe入力モードを利用すると、モードをトレーニングする合計時間はAmazon SageMakerにサポートされているインスタンスタイプで40%も削減できることがわかります。 二度目のデータセットである1GB CSVファイルは、400個の記録のみで、それぞれの記録は10万個のカンマで切り離された単精度浮動小数点数でした。バッチサイズが10の早期に実施していたトレーニング基準で再度実施してみました。 Pipeモードを利用したパフォーマンスは著しい向上を見せ、モデルをトレーニングする合計時間はおよそ75%も削減されました。 このような実験の結果は、Pipe入力モードが目覚ましいパフォーマンスの向上をもたらすということを明確に示しています。トレーニングインスタンスへデータセットをダウンロードすることから生じる遅れを避け、トレーニングジョブでより高度は読み込み処理ができるようになります。 Amazon SageMakerを利用する ノートブック見本を活用してAmazon […]

Read More