Amazon Web Services ブログ

Category: Amazon Machine Learning

DeepRacer League のもう一つのトリプルでは、さらなる世界記録を更新し、初の女性優勝者が誕生しました!

AWS DeepRacer League は、誰もが参加可能な、自動運転車による世界初の国際的レーシングリーグです。あらゆるスキルレベルの開発者達が、国際的に 22 回開催される AWS イベントで直接、あるいは AWS の DeepRacer コンソールを通じオンラインでの競技参加が可能です。彼らは 2019 年のチャンピオンカップをかけたレースが開催される re:Invent 2019 への旅費無料の招待を賭けて競い合います。 先週、AWS DeepRacer League が世界中の 3 つの都市 (米国ワシントン DC、台湾台北、日本東京) を訪れました。各レースでは何日にもわたり、開発者が優勝ラップタイムを記録できるように多数の機会を提供しました。 初の女性優勝者と世界記録 東京レースは今回も最大規模で行われました。都市のすぐ離れにある幕張メッセで 2 万人を超える AWS のお客様が AWS サミットに参加し、学習、実践ラボ、およびネットワーキングを 3 日間行いました。開発者がサミットを通して競うための 2 つの DeepRacer トラック、仮想レーシングポッド、および DeepRacer モデルを構築する方法を学ぶための複数のワークショップが開かれました。 モデルを構築し、AWS DeepRacer リーグの詳細を学ぶための仮想レーシングポッド。 何百人もの開発者が各自のモデルをトラックでテストしましたが、誰も初の女性優勝者である sola@DNP の世界最高記録 7.44 秒を勝ち抜くことはできませんでした。実際の車のサイズにスケールアップした場合、DeepRacero は約 100 mph に相当します。 sola@DNP […]

Read More

AWS DeepRacer ご利用後のリソース削除方法について

先日 2019年6月12日~14日に開催されたAWS Summit Tokyo 2019 では AWS DeepRacer リーグが行われました。AWS DeepRacer のご利用の際は、ご利用後に使わないリソースを適宜削除し、不要な課金を防いで利用しましょう。 AWS DeepRacer シミュレータのアーキテクチャ この図のように、AWS DeepRacer を立ち上げると、VPC 内に AWS DeepRacer の学習・推論評価用途 SageMaker, RoboMaker、描画、学習データの保存・データ転送に S3, Kinesis Video Stream, NAT Gateway が自動的に起動し、それぞれのサービスに対して課金が発生します。下記では、AWS DeepRacer ご利用後のリソース削除方法を紹介します。 注)本ブログは2019年6月15日時点の仕様を基にしており、今後変更の可能性がございます。   継続的な課金を停止するのに必要なこと リソースの自動削除 一度サービスを立ち上げると、学習・評価が終了しても、一部のサービスが起動したままの状態になっています。継続的な課金を防ぐために、下記の手順で関連リソースを削除することで、継続的な課金が防げます。 AWS DeepRacer → Reinforcement learning → Create model を選択 Account resources で、4つのリソースの左チェック印が緑色の場合、関連リソースが利用可能な状態となっています。 不要な課金を防ぐためには、Reset resources をクリックすれば、S3以外の関連リソースは削除されます。   S3 バケットの削除方法 また、S3バケットの削除は別途行う必要があります。S3 […]

Read More

【開催報告】Digital Advertising Japan Seminar 2018 – Machine Learning 事例祭り –

こんにちは。AWS ソリューションアーキテクトの八木達也 ( @ygtxxxx ) です。 7月23日に、「Digital Advertising Japan Seminar 2018 – Machine Learning 事例祭り –」を開催いたしました。 AWSジャパン主催でデジタル広告業界の方向けのイベントを開催するのは2年ぶりでしたが、定員60人のところ55名の方にお集まりいただき、盛況となりました。             このイベントは「Digital Advertising、AdTech 領域における Machine Learningの実践知」を「互いに学び合う」ことができる場を作ることを目標としていたため、AWSメンバーによるプレゼンテーションだけではなく、お客様プレゼンテーションを中心としたAGENDAを構成しました。機会学習という領域における、テクノロジー視点でのお取組み、組織育成視点でのお取組み、それぞれの視点で最先端な活動をなさる方々よりご登壇を頂きました。 まずは主催者の唐木/八木よりオープニングセッションを行いました。 唐木より全体の説明を行い、八木より「Machine Learning for Digital Advertising」というタイトルでプレゼンテーションを行いました。 Machine Learning for Digital Advertising from Amazon Web Services Japan 次に、アナリティクス スペシャリスト ソリューションアーキテクトの志村より「AWS ML Services Update」というタイトルでプレゼンテーションを行いました。 AWS ML Update from Amazon […]

Read More