Amazon Web Services ブログ

Category: Amazon Redshift

【開催報告】Amazon Analytics (Data Lake)セミナー ~AWSで実現するビッグデータ&ログ分析およびデータレイクの構築~

2018年6月21日に、「Amazon Analytics (Data Lake)セミナー」というイベントが開催されました。本セミナーでは、ビッグデータの取り扱いとデータ分析を中心とした利活用、またデータレイクによる効率的なデータの運用を中心テーマにおき、AWS クラウド上での最適な実現方法について、AWS ソリューションアーキテクトおよび Amazon Redshift サービスチームからご紹介しました。また、データの可視化については Amazon QuickSight のデモをご覧いただき、あとでお客さまご自身で QuickSight をお試しいただけるよう、セッション終了後にデモのガイドとサンプルデータを配布しました。 この記事ではそのイベントの内容をご紹介します。また、最後に各発表資料へのリンクも掲載しています。  

Read More

【開催報告】Amazon Redshift 事例祭り(DWHマイグレーション)

先日(5月10日)、「Amazon Analytics (Redshift) 事例祭り」というイベントが開催されました。オンプレミスDWHを利用していた、もしくは現在使用しているお客様がDWHをAWSクラウド上のAmazon Redshiftに移行した経験談を共有していただくという内容のセミナーで、定員の120名を越えるお申込をいただき、会場が満室になる熱気の中で実践的な情報が共有されました。 この記事ではそのイベントの内容をご紹介します。また、各社発表資料へのリンクも掲載しています。

Read More

[AWS Black Belt Online Seminar] AWS で構築するデータレイク基盤のアーキテクチャ 資料及び QA 公開

こんにちは、マーケティングの鬼形です。 先日(2018/4/24)開催しました AWS Black Belt Online Seminar「AWS で構築するデータレイク基盤のアーキテクチャ」の資料を公開致しました。当日、参加者の皆様から頂いた QA の一部についても共有しております。

Read More

Pgpool と Amazon ElastiCache を使って Amazon Redshift でクエリーキャッシュを実現する

Felipe Garcia と Hugo Rozestraten は  Amazon Web Services の  Solutions Architect です。 この記事では、実際のお客様の事例をもとに、Amazon Redshift の前段に pgpool と Amazon ElastiCache を使ってキャシングレイヤを構築する方法を紹介します(訳注:原文執筆時にはRedshiftにキャッシュ搭載されていなかったのですが、現在はRedshiftには結果キャッシュの機能が備わっているため、キャッシュするだけのためにこのようなソリューションを作成する必要はありません。しかしpgpoolはキャッシュ以外にも利用できる柔軟なソリューションであり、それを分かりやすく示している資料として価値があるため、翻訳記事を掲載しています) 近年、業務アプリケーションはほとんどの場合データベースの利用を想定して構築されます。SQLによるデータベースへのクエリは広く普及した技術ですが、エンドユーザとアプリケーション間の協調を意識しないアーキテクチャ設計が、まったく同一のクエリの複数回実行といった無駄な処理を時として発生させます。このような冗長な処理は計算資源の無駄遣いであり、こういった無駄を省くことができれば他の処理に計算資源を有効活用することができるようになります。 キャッシュとは コンピュータ用語としてのキャッシュは、将来発生し得るリクエストに迅速に回答するためにデータを事前に蓄積しておくハードウェアコンポーネントまたはソフトウェアコンポーネントを指します。また、必要なデータがキャッシュの中に見つかることをキャッシュヒットといい、必要なデータがキャッシュの中に存在しないことをキャッシュミスといいます。キャッシュの存在により、重い計算の再実行や遅いデータストアからの読み出しが発生しなくなり、高速に結果を得られるようになります。より多くの要求がキャッシュで処理できれば、システムはより高いパフォーマンスを発揮することができます。 お客様事例:臨床研究での遺伝子情報の検索 この事例では、6-10名程度からなる科学者のチームが200万からなる遺伝子のコードの中から特定の遺伝子変異を探し出します。特定の遺伝子変異に隣接する遺伝子も重要な遺伝子で、これらにより異常や病気などが特定できるようになります。 科学者たちは、1つのDNAサンプルをチームで同時に解析し、その後ミーティングを開き自分たちの発見について議論し、結論へと到達します。 この事例では、Node.js のウェブアプリケーションにロジックを実装し、Amazon Redshift にクエリを発行しています。Amazon Redshfit に直接接続したアプリケーションでは、クエリのレイテンシは約10秒でした。アーキテクチャを変更しpgpoolを使用するようにしたところキャッシュにヒットした際に1秒未満で同一のクエリの結果を得られるようになりました。(言い換えると、キャッシュヒット時に10倍高速に応答できるようになりました。) (訳注:現時点ではRedshiftに結果キャッシュの機能が存在するため、こういった仕組み無しでもキャッシュヒット時に高速な応答が実現されています) Pgpoolの紹介 Pgpool はデータベース・クライアントとデータベース・サーバの間で動作するソフトウェアです。リバースプロキシとして動作し、クライアントからの接続要求を受け、サーバへとそれをフォワードします。もともと PostgreSQL のために書かれており、キャッシング以外にも、コネクションプーリング、レプリケーション、ロードバランシング、コネクションキューイングといった機能を備えます。本稿では、キャッシング機能のみを検証しています。 Pgpool は、Amazon EC2 上でも、オンプレミス環境でも動作させることができます。たとえば、開発やテスト目的でEC2のシングル構成をとるこもできますし、本番環境のために Elastic Load Balancing 、Auto Scaling 構成のEC2複数台構成をとることもできます。 臨床研究の事例では、psql(コマンドライン)と Node.js アプリケーションから Amazon Redshift に対してクエリを発行していて、実際に期待通りに動作することが確認できています。ご自身の環境に適用する場合には、十分な検証を経た上での採用をおすすめいたします。   […]

Read More

[AWS Black Belt Online Seminar] データウェアハウスのAWSへの移行 資料及びQA公開

こんにちは、ソリューションアーキテクトの有岡です。 先日(2018/3/19)開催致しました AWS Black Belt Online Seminar「データウェアハウスのAWSへの移行」の資料を公開いたしました。当日、参加者の皆様から頂いた QA の回答と併せてご紹介致します。

Read More

本番環境でAmazon Redshift Spectrum, Amazon Athena, およびAWS GlueをNode.jsで使用する

これはNUVIADの創設者兼CEOであるRafi Tonによるゲスト投稿です。NUVIADは、彼ら自身の言葉を借りれば、「ハイパーターゲティング、ビッグデータ分析、先進的な機械学習ツールを使ってプロのマーケティング担当者、代理店、地元の企業に最先端のツールを提供するモバイルマーケティングプラットフォーム」です。 NUVIADでは3年以上にわたり、Amazon Redshiftを主なデータウェアハウスソリューションとして使用してきました。 当社は、ユーザーとパートナーが分析し広告キャンペーンの戦略を決定するための、大量の広告取引データを保存しています。リアルタイム入札(RTB)キャンペーンを大規模に実行する場合、ユーザーがキャンペーンの掲載結果の変化に迅速に対応する上で、データの最新性が極めて重要となります。我々は、シンプルさ、スケーラビリティ、パフォーマンス、およびニアリアルタイムで新しいデータを読み込む能力を評価し、Amazon Redshiftを選択しました。 過去3年間で、当社の顧客基盤は大幅に成長し、データも同様に増加しました。Amazon Redshiftクラスターは、当初の3ノードから65ノードにまで伸張しました。コストと分析のパフォーマンスのバランスを取るため、我々は頻繁に分析されない大量のデータを低コストで保存する方法を探しました。一方で、我々は依然として、ユーザークエリーに対してすぐにデータを利用できるようにしておき、高速なパフォーマンスについての彼らの期待に応えたいと考えていました。そして、我々はAmazon Redshift Spectrumに目を向けたのです。 この記事では、Amazon RedshiftをRedshift Spectrumによってモダンなデータウェアハウスとして拡張した理由について説明します。データの成長と、コストとパフォーマンスのバランスを取る要求とが、どのように我々をしてRedshift Spectrumの採用に至らしめたかを説明します。私たちの環境における重要なパフォーマンスメトリクスをご紹介し、また、増え続けるユーザーベースによる即時性の高いクエリーのためにデータを利用可能な状態に置きつつ、スケーラブルで高速な環境を提供する、その他のAWSサービスについても議論します。 ビジネス基盤としてのAmazon Redshift 当社のプラットフォームでは、最新のデータをお客様やパートナーに提供することが常に主要な目標でした。数時間前のデータを提供する他のソリューションがも検討しましたが、これは我々にとって十分ではありませんでした。可能な限り最新のデータを提供することにこだわりたかったのです。Amazon Redshiftによって、頻繁なマイクロバッチでデータをロードし、顧客がAmazon Redshiftに直接クエリーしてニアリアルタイムで結果を得ることが可能となりました。 利点はすぐに明らかになりました。当社のお客様は、キャンペーンが他のソリューションよりいかに速く実行されたかを知ることができ、また、常に変化し続けるメディアの供給価格と利用可能性の課題に早急に対応できるようになりました。彼らはとても幸せでした。 しかし、この方法ではAmazon Redshiftに長期間にわたって多くのデータを保存する必要があり、そして我々のデータは急速に増加していました。ピーク時には、65のDC1.largeノードを実行するクラスターを運用していました。Amazon Redshiftクラスタへの影響は明白であり、CPU使用率も90%にまで増加していました。 Amazon RedshiftをRedshift Spectrumへと拡張した理由 Redshift Spectrumは、データをロードすることなく、Amazon S3に格納されたデータに対して、強力なAmazon Redshiftクエリエンジンを使用してSQLクエリを実行する能力を提供してくれます。Redshift Spectrumでは、必要な場所に、我々が望むコストでデータを保存することができます。そしてデータを、ユーザーが必要とした時に期待通りのパフォーマンスで分析が行える状態にしておくことができるのです。 シームレスなスケーラビリティ、高性能、および無制限の同時実行性 Redshift Spectrumがスケールするプロセスはシンプルです。まず、Amazon S3をストレージエンジンとして利用し、事実上無制限のデータキャパシティを得ることができるようになります。 次に、より多くのコンピューティング能力が必要な場合は、Redshift Spectrumの数千ノードにおよぶ分散コンピューティングエンジンを使ってよりよいパフォーマンスを得ることができます。大量のデータに対して複雑なクエリーを投げるには最適です。 さらに、全てのRedshift Spectrumクラスターを同一のデータカタログにアクセスさせれば、データの移行に頭を悩ませることはなくなります。スケーリングは労力を必要とせず、かつシームレスなものになります。 最後に、Redshift Spectrumは潜在的に数千ものノードにクエリーを分散させるため、他のクエリーによって影響を受けることがなくなり、より安定したパフォーマンスが得られます。また、無制限の同時実行性(訳者註:クラスターを分けることで実現できます)が提供されることになります。 SQLを維持できること Redshift SpectrumはAmazon Redshiftと同じクエリエンジンを使用します。従って、単一のテーブルで複雑なクエリを使用する場合も、複数のテーブルを結合する場合も、既存のBIツールやクエリー構文を変更する必要はありませんでした。 最近紹介された興味深い機能は、Amazon RedshiftとRedshift Spectrumの外部表の両方にまたがるビューを作成できるというものです。この機能を使用すると、Amazon Redshiftクラスター内の頻繁にアクセスされるデータと、Amazon S3上の頻繁にアクセスされないデータを、1つのビューでクエリーすることができます。 より高いパフォーマンスのためのParquet利用 Parquet は列指向のデータフォーマットです。Parquetは優れたパフォーマンスを提供するとともに、Redshift Spectrum(あるいはAmazon Athena)が極めて少ないデータのみをスキャンできるようにします。I/Oが少なくなれば、クエリーはより高速になり、そしてクエリー当たりのコストも低くなります。 […]

Read More

Amazon Redshift Spectrumによるセキュリティとコンプライアンスのためのデータベース監査ログの分析

(補足:本記事は2017年6月にAWS Bigdata Blogにポストされた記事の翻訳です。一部の記載を現時点の状況に合わせて更新してあります) クラウドサービスの採用が増加するにつれて、組織は重要なワークロードをAWSに移行しています。これらのワークロードの中には、セキュリティとコンプライアンスの要件を満たすために監査が必要な機密データを格納、処理、分析するものがあります。監査人が良くする質問は、誰がどの機密データをいつ照会したのか、いつユーザが最後に自分の資格情報を変更/更新したのか、誰が、いつシステムにログインしたかということです。 デフォルトでは、Amazon Redshiftは、ユーザーの接続情報、変更情報、アクティビティに関連するすべての情報をデータベースに記録します。ただし、ディスク領域を効率的に管理するために、ログの使用状況と使用可能なディスク容量に応じて、ログは2〜5日間のみ保持されます。より長い時間ログデータを保持するには、データベース監査ロギングを有効にします。有効にすると、Amazon Redshiftは指定したS3バケットに自動的にデータを転送します。 Amazon Redshift Spectrumにより、Amazon S3に格納されたデータにクエリすることを可能にし、さらにAmazon Reshift のテーブルと結合することも可能です。 Redshift Spectrumを使い、S3に格納されている監査データを確認し、すべてのセキュリティおよびコンプライアンス関連の質問に答えることができます。AVRO、Parquet、テキストファイル(csv、pipe delimited、tsv)、シーケンスファイル、およびRCファイル形式、ORC、Grokなどのファイルをサポートしています。 gzip、snappy、bz2などのさまざまな圧縮タイプもサポートしています。 このブログでは、S3に保存されたAmazon Redshift の監査データを照会し、セキュリティーやコンプライアンスの質問への回答を提供する方法を説明します。 作業手順 次のリソースを設定します。 Amazon Redshift クラスタとパラメータグループ Amazon Redshift に Redshift Spectrumアクセスを提供するIAMロールとポリシー Redshift Spectrum外部表 前提条件 AWS アカウントを作成する AWS CLI にて作業ができるように設定する Amazon Redshift にアクセスできる環境を用意する。(psqlやその他クライアント) S3バケットを作成する クラスタ要件 Amazon Redshift クラスタは、次の条件を満たす必要があります。 監査ログファイルを格納しているS3バケットと同じリージョンにあること バージョン1.0.1294以降であること ログ蓄積用のS3バケットに読み込み、PUT権限を設定されていること AmazonS3ReadOnlyAccessとAmazonAthenaFullAccessの少なくとも2つのポリシーを追加したIAMロールにアタッチしていること Amazon Redshift のセットアップ ユーザーのアクティビティーをロギングするために、新しいパラメータグループを作ります。 aws […]

Read More

Amazon Redshift Spectrumが東京リージョンで利用可能になりました & Spectrum 一般公開後のアップデート

Amazon Redshift は高速で完全マネージド型のデータウェアハウスです。ペタバイト級のデータを高速なローカルストレージに取り込み、多様なクエリを処理可能なデータウェアハウスを実現可能です。 今年の4月に新機能としてAmazon Redshift Spectrumが発表されました。これはデータをAmazon S3に置いたままロードせずにAmazon Redshiftからクエリする事を可能にする新機能であり、Amazon Redshiftが処理可能なデータサイズをペタバイトから、エクサバイト級に押し上げるものです。データ置き場(Amazon S3)とデータ処理基盤(Amazon Redshift)が分離するということは、単に扱えるデータサイズが増えるだけでなく、これまで以上に多彩なワークロードを実現可能にしました。例えば、ロード時間なしで素早くデータ分析を開始したり、あまりアクセスしない古いデータと頻繁にアクセスするデータの置き場所を変えることで、コスト効率の良いデータウェアハウスを実現しつつ、全期間のデータ分析を実現する等です。 Amazon Redshift Spectrumについての詳細を確認するには、以下の記事を参照してください。 Amazon Redshift Spectrum – S3のデータを直接クエリし、エクサバイトまでスケール可能 データウェアハウスをエクサバイト級に拡張するAmazon Redshift Spectrum Amazon Redshift Spectrumによるセキュリティとコンプライアンスのためのデータベース監査ログの分析 Amazon Redshift Spectrumは北バージニアリージョンから提供を開始し、継続的に利用可能なリージョンを増やしてきました。そして本日からAmazon Redshift Spectrumが東京リージョンで利用可能になりました! AWSのサービスはリリースした後も新機能が継続的に追加されていきます。Amazon Redshift Spectrumもその例外ではなく、上述のブログには書かれていなかった機能が多数追加されています。本稿ではGA(一般利用開始)から現在までの期間でどのような機能追加、改善があったのかを解説します。 継続的な処理性能の改善 Amazon Redshiftでは内部的な改善による処理性能の向上が継続的に行われています。Amazon Redshift Spectrumでの改善の1つとして、大きいファイルの分割アクセスがあります。GAの時点では1つのファイルを1つのSpectrum層のプロセスが処理していたため、ファイルサイズが巨大だった場合に読み取りがボトルネックになる可能性がありましたが、その後の改善で巨大なファイルは自動的に分割して読み取り処理を行なうように改善されています。(巨大ファイルをそのまま置く事を推奨しているわけではありません。可能であれば利用者の方で適切なサイズに分割しておく事が推奨されます) Amazon Redshift Spectrumのパフォーマンスについては以下の記事も参照してください。 Amazon Redshift Spectrum 10 のベストプラクティス 対応フォーマットの追加 Amazon Redshift Spectrumでは多彩なフォーマットに対応しているのが特長です。CSV、TSVといった区切りファイル、Parquet、RCFileといったカラムナフォーマット等です。そしてGA後も継続的に対応フォーマットが追加されています。例えばカラムナフォーマットのORCファイルや、Regex(正規表現)等がGA後に追加されました。現時点では以下のファイルフォーマットをサポートしています。 AVRO PARQUET TEXTFILE SEQUENCEFILE RCFILE […]

Read More

データウェアハウスをエクサバイト級に拡張するAmazon Redshift Spectrum

(補足:本記事は2017年7月にAWS Bigdata Blogにポストされた記事の翻訳です。一部の記載を現時点の状況に合わせて更新してあります) 何年も前、最初にクラウドベースのデータウェアハウスを構築する可能性について検討を始めた際、我々は、我々の顧客が増え続ける一方の大量のデータを持つ一方で、そのごく一部のデータのみが既存のデータウェアハウスやHadoopシステムに投入され分析に利用されているという事実に直面しました。同時に、これがクラウド特有の特殊事情ではないこともわかりました。エンタープライズストレージ市場の成長率がデータウェアハウス市場のそれを大きく上回る様々な業界においても、状況は同じだったのです。 我々はこれを“ダークデータ”問題と名付けました。我々の顧客は、彼らが収集したデータに利用されていない価値があることに気づいていました。そうでなければなぜそれを保管するコストをかけるでしょうか?しかしながら、彼らが利用できるシステムは、これらのデータ全てを処理するには遅すぎ、複雑すぎ、高すぎたため、データのサブセットのみを利用することになりました。彼らはいつか誰かが解決策を見出すことへの楽観的な期待とともに、これらのデータを保持し続けました。 Amazon Redshift はダークデータ問題の解決に寄与することから、AWSサービスの中でも最も成長の速いサービスの一つとなりました。このソリューションは大半の代替案に比べ、少なくとも一桁は安価で、かつ高速でした。また、Amazon Redshiftは当初からフルマネージドのサービスで、ユーザーはキャパシティやプロビジョニング、パッチ対応、監視、バックアップ等を始めとする様々なDBA課題について頭を悩ませる必要がありませんでした。 Vevo, Yelp, Redfin,Edmunds, NTTドコモなどの多くの顧客が、Amazon Redshiftに移行して、クエリー性能の改善、DBAオーバーヘッドの削減、そして分析コストの低減を実現しました。 我々の顧客のデータは、極めて速いペースで増え続けています。おしなべて、ギガバイトのデータはペタバイトとなり、平均的なAmazon Redshift顧客が分析するデータ量は毎年二倍になっています。我々が、増加するデータを扱う上でお客様の手助けとなる機能群を実装してきた理由はここにあります。例えばクエリースループットを二倍にする、圧縮率を三倍から四倍に改善する、といったことです。これらは、お客様がデータを破棄したり分析システムから削除したりすることを考慮せざるを得なくなる時期を遅らせることができます。しかしながら、ペタバイトのデータを日々生成するAWSユーザーが増えており、こうしたデータはわずか3年でエクサバイトの水準に達します。このようなお客様のためのソリューションは存在しませんでした。もしデータが毎年倍々になるのであれば、コスト・性能・管理のシンプルさに革新をもたらす、新たな、破壊的なアプローチを見付けることを強いられるまで、そう長い時間はかからないでしょう。 今日利用可能な選択肢に目を向けてみましょう。お客様は、Amazon EMRを用いて、Apache HiveなどのHadoopベースの技術を利用することができます。これは実際のところ、非常に素晴らしいソリューションです。抽出と変換のステップを経ることなく、Amazon S3上のデータを簡単かつ低コストで直接操作できるようになるからです。クラスターは必要な時に起動することができ、実行対象となる特定のジョブに合うよう適切にサイジングすることができます。こうしたシステムは、スキャンやフィルター、集計といったスケールアウト型の処理には最適です。一方で、これらのシステムは複雑なクエリー処理には向いていません。例えば、結合処理ではノード間でデータをシャッフルする必要が生じます。巨大なデータと多数のノードが存在する場合、この処理は極めて低速になります。そし結合処理は、重要な分析課題の大半において本質的に重要なものです。 Amazon Redshiftのような、列指向かつ超並列型のデータウェアハウスを利用することもできます。こうしたシステムは、巨大なデータセットに対する結合や集計といった複雑な分析クエリーを、単純かつ高速に実行することを可能にします。特に、Amazon Redshiftは、高速なローカルディスクと洗練されたクエリー実行、そして結合処理に最適化されたデータフォーマットを活用します。標準SQLを用いるので、既存のETLツールやBIツールを活用することもできます。一方で、ストレージとCPU双方の要件を満たすようにクラスターをプロビジョニングする必要があり、データロードも不可欠となります。 いずれのソリューションも強力な特長を備えていますが、お客様はどちらの特長を優先するかの判断を強いられます。我々はこれを「ORの抑圧(※)」と見做しています。ローカルディスクのスループットとAmazon S3のスケーラビリティは両立できない。洗練されたクエリー最適化と高度にスケールするデータ処理は両立できない。最適化されたフォーマットによる高速な結合処理性能と、汎用的なデータフォーマットを用いる様々なデータ処理エンジンは両立できない、などです。しかし、この選択は本来迫られるべきではありません。この規模においては、選択する余裕など到底ないからです。お客様が必要とするのは「上記の全て」なのです。 ※ジム・コリンズが著書「ビジョナリー・カンパニー」で提示した概念。一見矛盾する力や考え方は同時に追求できない。 Redshift Spectrum Redshift Spectrumは、こうした「ORの抑圧」に終止符を打つべく開発されました。Redshift Spectrumによって、Amazon Redshiftを利用されているお客様はAmazon S3上のデータに対し 簡単にクエリーを実行できるようになります。Amazon EMRと同様に、お客様はオープンなデータフォーマットと安価なストレージの恩恵を享受できます。データを抽出し、フィルターし、射影し、集計し、グループ化し、ソートするために、何千ものノードにスケールアウトすることも可能です。Amazon Athenaと同様に、Redshift Spectrumはサーバーレスであり、プロビジョニングや管理は必要ありません。単に、Redshift Spectrumを利用したクエリーが実行されている間に消費中のリソースに対してお支払いいただくだけです。Amazon Redshift自身と同様に、洗練されたクエリーオプティマイザー、ローカルディスク上のデータへの高速アクセス、そして標準SQLの恩恵を得ることができます。そして、他のどのようなソリューションとも異なり、Redshift Spectrumはエクサバイト級ないしはそれ以上のデータに対して、高度に洗練されたクエリーを、わずか数分で実行することが可能です。 Redshift SpectrumはAmazon Redshiftの組み込み機能の一つであり、お客様の既存のクエリーやBIツールはシームレスにご利用いただくことができます。背後では、我々は複数のアベイラビリティゾーンに跨がった何千ものRedshift Spectrumノードのフリートを運用しています。これらのノードは、処理する必要があるデータに基づいて透過的にスケールし、クエリーに割り当てられます。プロビジョニングや利用の確約は不要です。Redshift Spectrumは同時実行性にも優れています。お客様は任意のAmazon S3上のデータに対して、複数のAmazon Redshiftクラスターからアクセスすることができます。 Redshift Spectrumクエリーのライフサイクル Redshift Spectrumクエリーのライフサイクルは、クエリーがAmazon Redshiftクラスターのリーダーノードに送信された時に始まります。リーダーノードはクエリーを最適化し、コンパイルし、その実行命令をAmazon Redshiftクラスターのコンピュートノード群に送ります。次に、コンピュートノード群は外部テーブルに関する情報をデータカタログから取得し、当該クエリーのフィルターと結合に基づいて、無関係なパーティションを動的に取り除きます。コンピュートノードはまた、ノード上でローカルに利用可能なデータを精査して、Amazon S3内の関連するオブジェクトだけを効率的にスキャンするようプレディケイトプッシュダウンを行います。 Amazon Redshiftコンピュートノードは、続いて、処理する必要のあるオブジェクトの数に基づいて複数のリクエストを生成し、それらをRedshift Spectrumに一斉に送ります。Redshift Spectrumは、AWSリージョンごとに何千ものAmazon EC2インスタンスをプールしています。Redshift […]

Read More

Amazon Redshiftに新世代のDC2ノードが追加 – 価格はそのままで最大2倍の性能向上

Amazon Redshiftは高速で完全マネージド型のデータウェアハウス(DWH)です。ペタバイト級までスケールアウトが可能であり、Amazon Redshift Spectrumを利用することでAmazon S3上に保存されたエクサバイト級のデータにロード無しでクエリを実行することも可能です。 Amazon Redshiftがリリースされた当初からご利用いただいている方であれば、当初はHDD搭載のDW1と呼ばれるノード1種類しか無かったことをご記憶かと思います。続いてSSDを搭載した新しいノード追加され、DW1(HDDベース)とDW2(SSDベース)の2タイプから選択可能になりました。 その後、DW1の後継がリリースされる際にHDDベースはDense Storage (DS) に、SSDベースはDense Compute (DC)とそれぞれの特性を表した名前に整理され、DS1(旧DW1)の後継としてDS2がリリースされました。DS2リリース時のブログエントリはこちらにありますが、その登場はDS1ユーザから驚きをもって迎えられました。DWHとしての性能が大きく向上しつつ、ノードの価格は据え置きだったからです。 次はDense Compute (DC)の番です。DC2が本日より利用可能になりました! 第二世代のDense Computeノード DC2はDC1の後継となるノードであり、高いスループットと低いレイテンシを必要とするDWHワークロードのために設計されています。CPUはIntel E5-2686 v4(Broadwell)になり、高速なDDR4メモリを搭載。ストレージはNVMe接続のSSDです。 私達はAmazon Redshiftがこのより高速なCPU、ネットワーク、ストレージの性能をDC2で十分に発揮できるようチューニングを行い、結果としてDC1との同一価格構成での比較で最大2倍のパフォーマンスを発揮しています。DC2.8xlargeノードではスライスあたりで2倍のメモリを搭載しており、ストレージレイアウトの改善によって30%多いデータが保管できるようになりました。これらの改善がされた新世代のノードを旧世代と同じ価格で提供します。 DC2.8xlargeではパフォーマンスを最大化するためにスライス数が変更されています。旧世代のDC1.8xlargeでは1ノードあたり32スライスでしたが、DC2.8xlargeでは16スライスに変更されています。DC2.largeはDC1.largeと変わらず1ノード2スライスのままです。 このため、DC1.8xlarge (もしくはDS)からDC2.8xlargeへ移行するためにはクラスターのリサイズが必要になります。DC1.largeからDC2.largeへの移行については、リサイズもしくはDC1で取得したスナップショットからの作成が可能です。 本日より利用可能です DC2ノードはUS East (N. Virginia), US East (Ohio), US West (N. California), US West (Oregon), EU (Frankfurt), EU (Ireland), EU (London), Asia Pacific (Singapore), Asia Pacific (Tokyo), Asia Pacific […]

Read More