Amazon Web Services ブログ

Category: Amazon Aurora

2018 年に最もよく読まれた AWS データベースブログ

この記事では、私たちが 2018 年に掲載した AWS データブログ記事で、最もよく読まれた10本を紹介しています。このリストをガイドとして使って、まだ読んでいないデータベースブログに目を通す、または特に有益だと思った記事を読み返すことができます。

Read More

Intuit 社の導入事例: オンプレミス MySQL から Amazon Aurora への移行の自動化

Intuit社はレガシーデータセンターを売却し、顧客向けアプリケーションである QuickBooks、TurboTax、および Mint を AWS に移動させており、今後数年の間には完全に移行させる予定です。このブログ記事では、彼らがオンプレミスMySQLの移行先として、どのような基準で Amazon Aurora を選び、どのようにして最小限のダウンタイムで移行したのかについて共有されています。

Read More

Oracle から PostgreSQL へ移行する際に、よく直面する課題を解決する方法

企業は年々データが急激に増加するのを目の当たりにしています。データベースとハードウェアインフラストラクチャをスケーリングし続けることは、ますます困難になっています。ワークロードが非リレーショナルデータストアに適していない場合に、基盤となるインフラストラクチャの管理に膨大な費用を費やすことなく、スケーリングの課題をどのように克服したらいいでしょうか? Amazon RDS for PostgreSQL と Amazon Aurora with PostgreSQL により、コスト効率の高い方法で PostgreSQL クラウドのデプロイを簡単にセットアップ、運用、拡張することができます。昨年、私たちは (数百 GB から数 TB に及ぶ) 100 を超える Oracle データベースを Amazon Aurora PostgreSQL と Amazon RDS for PostgreSQL に移行しました。 この記事では、移行中に持ち上がった最も一般的な問題のいくつかについて説明します。皆さんは AWS Database Migration Service (AWS DMS) を使用して、あるデータベースから別のデータベースにデータを移動させた経験があることでしょう。私も AWS Schema Conversion Tool (AWS SCT) をかなり使い込みました。手始めに、データ抽出プロセスで直面する可能性のある問題を取り上げます。次に、データの移行中に起こる問題について取り上げます。最後に、移行後に PostgreSQL で観察するパフォーマンスの問題について説明します。 抽出フェーズの問題 このフェーズで一般的に直面する問題は、大きなテーブルのデータ抽出が遅くなり、ソース DB で ORA-01555 エラー (スナップショットが古すぎます) […]

Read More

Amazon Aurora PostgreSQL によるフェイルオーバー

レプリケーション、フェイルオーバー、レジリエンス、災害対策、バックアップ—従来の、または非クラウドベースのアーキテクチャでは、これらの一部またはすべてを実現するのはとても困難です。さらに、時にはかなりのリエンジニアリング作業が必要になることがあります。関係する実装やインフラストラクチャのコストが高いため、一部の企業では最も重要なアプリケーションのみが適切に保護されるようにアプリケーションを階層化せざるを得ません。 こうした懸念は、Amazon Aurora for PostgreSQL に移行すること軽減できます。AWS は、Oracle、MySQL、PostgreSQL、Aurora を含む (ただしこれらに限定されない) 幅広い種類のリレーショナルデータベースエンジンを提供しています。PostgreSQL の場合、AWS は Amazon EC2 インスタンスでの PostgreSQL、Amazon RDS for PostgreSQL、Amazon Aurora with PostgreSQL compatibility を含むさまざなバリエーションをサポートしています。適切なバージョンの PostgreSQL を選択するための多くの指標の中で、以下のいくつかが重要です。 高可用性 (HA) パフォーマンス 管理のしやすさ それでは、Amazon Aurora PostgreSQL がこうした基準をどのように満たしているかを掘り下げてみましょう。 高可用性: HA は、Aurora PostgreSQL のアーキテクチャに組み込まれており、3 つのアベイラビリティーゾーンにわたって 6 つのデータコピーが維持されています。つまり、アベイラビリティーゾーンごとに 2 つのコピーがあることになり、いずれかのアベイラビリティーゾーン全体がダウンしてもわずかな中断で済むことから可用性が向上します。さらに、データベースは Amazon S3 に継続的にバックアップされるため、S3 の高耐久性 (99.999999999) をバックアップで利用できます。Aurora PostgreSQL は、ポイントインタイムリカバリもサポートしています。 パフォーマンス: Amazon Aurora […]

Read More

SQL Server エージェントのジョブを AWS Step Functions に置き換える

Microsoft SQL Server から Amazon Aurora PostgreSQL への移行の場合に、SQL エージェントのジョブを簡単に移動できないことにお気づきかもしれません。Aurora PostgreSQL ではジョブエージェントツールがサポートされていません。この制限を克服するには、AWS Step Functions を使用して SQL エージェントのジョブを置き換えます。 このブログ記事では、ステップ関数を作成して、SQL ストアドプロシージャを実行する SQL エージェントのジョブを置き換える方法を示します。 ソリューションを実行するためのステップ このソリューションを実行するためのコードと AWS CloudFormation テンプレートは、この GitHub Amazon Repository にあります。 ソリューションを作成するために、CloudFormation テンプレートを使用して以下を準備します。 パブリックで利用可能なスナップショットからの SQL Server データベース用の Amazon RDS。 ステートマシン用の IAM ロール。 Step Functions アクティビティ。 Step Functions ステートマシン。 Step Functions ステートマシンを起動するための Amazon CloudWatch Events ルール。 CloudFormation テンプレートを使用して上記のリソースを準備した後に、以下の操作を実行します。 […]

Read More

AWSデータベース対応プログラムの紹介

新しいAWS Database Ready Programを導入し、ソフトウェアベンダーが彼らのソフトウェアを現代化し、Amazon Auroraをサポートできるようにします。 顧客は、商用データベースのライセンス費用を掛けずに、Amazon Auroraの性能、可用性、およびオープンソースの簡潔性を活用するクラウドネイティブアプリケーションを求めています。 AWS Database Readyは、元々AWSデータベースサービスで実行されるアプリケーションを使用してクラウド移行を加速することを可能にするものです。

Read More

Amazon Aurora を使用してエンドユーザーの待ち時間を 3 倍に改善する方法

  AWS で誕生 2011年の創業以来、我々の旅に加わっている InfoScout は AWS で誕生しました。友人や家族からアップロードされたレシートを収集する 1 つの Amazon EC2 インスタンス とともにすべてが始まりました。それから7年後、モバイルアプリケーション、データパイプライン、マシンラーニングモデル”→”機械学習モデル、SaaS 分析プラットフォームをサポートするため、現在では 150 以上の AWS インスタンスを管理しています。この記事では、増加するインフラストラクチャとデータベース移行での課題を詳細に分析しています。 我々のビジネスはシンプルです。日常の消費者がショッピングレシートの写真を撮影してクラウドにアップロードが可能なモバイルアプリケーションのポートフォリオを持っています。我々はこのデータを分析し、ブランド、小売業者、代理店、消費者パッケージ商品 (CPG) 企業の買い物客に深い識見を提供します。大規模なデータ収集に対するこの消費者中心のアプローチは、ブランドが最終的に非常に多くの問いの背後にある「なぜ」に答えることを可能にします。「なぜ、私のカテゴリーで売上高が 5% 減少したのでしょうか ? 」「このカテゴリーのどのような消費者シフトが私のブランドに売上に貢献しているのでしょうか ? 」「消費者のどのセグメントがオンラインに移行しているのでしょうか ? 」 米国では 500 回の購入で 1 回のキャプチャを行い、1 日に 300,000 枚のレシート画像をストリームします。 AWS でインフラストラクチャとアプリケーション全体を強化するために、Amazon EC2 、Amazon RDS 、Amazon S3 、Amazon VPC 、および Route 53 を大量に使用しています。2011 年にはカリフォルニア北部の single VPC 1 […]

Read More

統合ワークロードに向けた MySQL と互換性がある Amazon Aurora を計画・最適化する方法

MySQL と互換性がある Amazon Aurora はデータベースワークロード統合を検討中のお客様から好評をいただいています。Aurora MySQL は、ハイエンドな商用データベースの速さや信頼性と、オープンソースデータベースのシンプルさと高い費用対効果とを組み合わせたリレーショナルデータベースエンジンです。また Aurora MySQL は、標準の MySQL Community Edition に比べ最大 5 倍のスループットを実現します。 今回のブログ記事では、大規模な統合データベースワークロードのために行う Amazon Aurora の最適化に役立つガイダンスをいくつかお伝えします。また、「統合の費用はどれくらいかかりますか?」や「データセットはどのくらいの大きさにできますか?」など、よくある質問にお答えします。 上記の質問はシンプルですが、必ずしも回答がシンプルになるわけではありません。回答は、お使いのデータセットやワークロードのパターンによって大きく異なります。 データベース統合の定義 統合のユースケースに関しては、以下の要素に的を絞り、それからコンテキストに応じた Aurora MySQL の操作方法について詳細を説明します。 テーブルのサイズ。統合により、一般的にテーブルは大きくなります。アドテック、IoT、消費者向けアプリケーション分野の場合、通常は大きな同種アプリケーションのデータベースをそれぞれにデータのサブセットが含まれる大量のシャードに分割します。Aurora ではシャーディングを完全になくすことはできないかもしれませんが、より少数のシャードに統合して操作上のオーバーヘッドを減らすことができます。 テーブルの数。テーブル数の増加も、統合の結果見られることです。この結果は、各テナントが通常、独自のデータベースまたはテーブルセットを有する場合にテナントの分離が必要な SaaS アプリケーションで一般的なものです。このタイプの複数のテナントは数が少なくより大きな Aurora クラスターにまとめられ、テナントあたりの操作コストを削減します。 データベースの使用率。さらに多数の同時接続を行うなど、統合データベースワークロードの使用率が多くのメトリクスで増加します。 実際には、同じプロジェクト内の複数の要素で使用率が増加することになります。以下のガイドラインは、各要素でワークロードを最適化するのに役立つはずです。 「大きい」とは具体的にどのくらいのサイズですか? Amazon Aurora には最大容量に制限があります。私たちの最も重要な成果は、Aurora クラスターで 64 TB という最大の保存容量です。最大容量により、Aurora クラスターに物理的に保存できるデータ量の上限が決められます。また、個々のテーブルの大きさについて上限が決められます。 加えて、MySQL と互換性があるデータベースエンジンとして、Aurora MySQL は MySQL と InnoDB ストレージエンジンから多くの特徴を受け継いでいます。これらの特徴には効果的な統合に影響を与えるものがあります。 大きなテーブルサイズを最適化する方法 Amazon Aurora […]

Read More

Amazon Aurora PostgreSQL で読み書き用に pgpool の単一のエンドポイント設定する方法

Amazon Aurora は、プライマリ DB インスタンス (クラスタエンドポイント) と、リードレプリカ (リーダーエンドポイント) のエンドポイントを提供します。Aurora は、クラスタエンドポイントを自動的に更新するので、常にプライマリインスタンスを指し示すようできています。リーダーエンドポイントの読み取り機能は、使用可能なすべてのリードレプリカの読み取り操作の負荷を分散します。 Amazon Aurora Replica では、通常 100 ms 未満のレプリケーションラグが発生します。したがって、アプリケーションで遅延が許容される場合は、クラスタエンドポイントとリーダーエンドポイントの両方を使用して、水平方向に拡張されたデータベースを利用できます (図 1)。 図 1: 使用するエンドポイントを決定するアプリケーションのアーキテクチャ ただし、読み取り用と書き込み用両方のデータベースエンドポイント管理は、複雑なアプリケーションになります。この記事では、pgpool を使った、書き込みデータ量を自動的にクラスタエンドポイントへ、また読み込みデータ量を読み込みエンドポイントに転送する PostgreSQL-Amazon Aurora 互換の単一エンドポイントの構築方法をご紹介します (図 2)。 図 2: pgpool ミドルウェアに基づいたソリューション提案 アーキテクチャ Pgpool は PostgreSQL データベースとデータベースクライアントの間に位置する BSD ライセンスのミドルウェアですこの例では、図 3 のアーキテクチャを使用します。 図 3: PostgreSQL-Amazon Aurora 互換クラスタ用の単一エンドポイントを構築するミドルウェアとしての pgpool の使用 Amazon Aurora クラスタは、1 つのプライマリインスタンス、2 つのアベイラビリティゾーンと 2 […]

Read More

暗号化技術を使用して個人データを保護しながら、Amazon Aurora の MySQL 互換版に移行する

AWS ではセキュリティが最優先です。また、お客様にとってもこれは同じことです。私たちは個人データを保護するために膨大な量のリソースを使用し、当社のお客様にとってデータの保護が容易になるよう継続的に機能強化を図っています。Amazon Aurora の MySQL 互換版を含め、AWS のサービスはすべて、EU の一般データ保護規則 (GDPR) に準拠しています。  詳細については、Amazon のウェブサイトで一般データ保護規則 (GDPR) センターを参照してください。 Amazon の主要データストレージと処理サービスの 1 つである、Amazon Aurora の MySQL 互換版では、幅広い暗号化とデータアクセスコントロールオプションを提供しています。これらはこうしたサービス上で保存した個人データを保護しやすいように設計されています。データ保護の責任は現在進行中の運用に限られたものではなく、データの移動や移行といったアクティビティにも伴います。 今日のお客様は個人データの保護方法に大きな関心を寄せており、彼らが保存および処理するデータにも目を配っています。この結果、暗号化されたデータベースへデータを移行したり、データの転送時に暗号化形式を使用したりといった決定を下すことが増えています。このブログ記事では、Amazon Aurora の MySQL 互換版と安全な移行を実行する様々なパターンと、それを可能にするサービス機能についてご紹介します。 Amazon Aurora の MySQL 互換版の暗号化データストレージと処理機能 Amazon Aurora の MySQL 互換版では、次に示すように、お客様が暗号化技術を使用して個人データを保存および処理できるようにするいくつかの機能を提供しています。 Amazon Aurora では AWS Key Management Service (AWS KMS) を通じて管理するキーを使用してデータベースを暗号化することが可能です。Amazon Aurora データベースで暗号化が有効になると、保存されているデータ、自動化されたバックアップ、スナップショットが暗号化されます。 Amazon Aurora の MySQL 互換版を使用することで、データベースインスタンスに暗号化された接続を確立でき、またクライアントに暗号化された接続を使用するよう強制することもできます。 復元時には自分の望む […]

Read More