Amazon Web Services ブログ

Julien Simon

Author: Julien Simon

As an Artificial Intelligence & Machine Learning Evangelist for EMEA, Julien focuses on helping developers and enterprises bring their ideas to life.

新機能 – Amazon SageMaker Debugger を使用した機械学習トレーニングジョブのプロファイリング

今日は、皆さんに Amazon SageMaker Debugger が機械学習モデルのプロファイリングを実行できるようになったことをお知らせしたいと思います。これにより、ハードウェアリソースの使用率が原因で生じるトレーニング問題の特定と修正が極めて容易になります。 幅広いビジネス問題に対応する目覚ましいパフォーマンスにもかかわらず、機械学習 (ML) は今も謎めいたところがあるトピックです。物事の的確な実行は、サイエンス、職人技 (魔法と言う人もいます)、そして時には運を組み合わせた錬金術です。特に、モデルトレーニングは、結果がデータセット、アルゴリズムとそのパラメータ、そしてトレーニングを実行するインフラストラクチャの品質に応じて変化する複雑なプロセスです。 ML モデルがかつてない規模に増大し、ますます複雑になるにつれて (深層学習さん、あなたのことです) 拡大している問題のひとつに、モデルをトレーニングするために必要なインフラストラクチャの量があります。たとえば、一般公開されている COCO データセットでの BERT のトレーニングは、単一の p3dn.24xlarge インスタンスで実行すると、それに 8 個の NVIDIA V100 GPU が搭載されているにもかかわらず、6 時間を優に超える時間がかかります。自律走行車企業などのお客様には、はるかに大きなデータセットを扱い、オブジェクト検出モデルのトレーニングに数日間かけるお客様もおられます。 複雑なトレーニングジョブにこれだけの時間がかかると、何らかの不具合が生じてトレーニングが失敗に終わる可能性が非常に高くなり、時間を無駄にするだけでなく、大きないら立ちを感じる原因にもなります。調査を行い、根本的な原因をつきとめて修正を試み、それからトレーニングジョブを再度実行する間、重要な作業は後回しにしなくてはなりません。たいていの場合は、問題を突き止めるために、この手順をかなりの回数繰り返すことになります。 使用している ML フレームワーク、そして時にはそのバージョンによっては、既存のフレームワーク固有のツールを使用できるかどうかもわからず、多くの場合は、独自の特注ツールを構築して維持しなくてはならなくなります。これは、経験豊かなプラクティショナーでさえも大いに苦労する作業で、私のような普通のデベロッパーにとっては、気が遠くなるようなタスクでしかありません。 Amazon SageMaker Debugger のモデルプロファイリングのご紹介 去年の AWS re:Invent でローンチされた Amazon SageMaker Debugger は、ML トレーニングジョブで生じている複雑な問題を自動的に識別する Amazon SageMaker の機能です。これらの問題には、減少しない損失、および勾配爆発などが含まれます。 SageMaker Debugger がハードウェアリソースの使用率も監視できるようになった今、これからはトレーニングジョブをプロファイリングして、リソースの使用率とトレーニングスクリプトの ML オペレーションとの関連付けに役立てることができます。そうすることで、はるかに迅速にパフォーマンス問題を解決し、はるかに高速にトレーニングジョブを反復することができるようになります。 自動運転および運転者支援システムを構築する Intel 企業、Mobileye の […]

Read More

新機能 – Amazon SageMaker の管理されたデータ並列化による大規模なデータセットを使用したトレーニングのシンプル化

今日は、数百から数千ギガバイトにおよぶデータセットでのモデルのトレーニングを容易にする、新しいデータ並列化ライブラリの Amazon SageMaker によるサポートが開始されたことをお知らせしたいと思います。 データセットとモデルがますます大きくなり、高度化するにつれて、大規模な分散型トレーニングジョブを扱う機械学習 (ML) プラクティショナーは、Amazon Elastic Compute Cloud (EC2) p3 および p4 インスタンスなどの強力なインスタンスを使用している場合でさえも、長くなる一方のトレーニング時間に対応しなければなりません。たとえば、8 個の NVIDIA V100 GPU を搭載した ml.p3dn.24xlarge インスタンスを使用しても、一般公開されている COCO データセットでの Mask RCNN および Faster RCNN などの高度なオブジェクト検出モデルのトレーニングには 6 時間以上かかります。これと同じく、最先端の自然言語処理モデルである BERT のトレーニングにも、同一のインスタンスで 100 時間以上かかります。自律走行車企業などのお客様には、大規模な GPU クラスターで何日もかけて実行される、さらに大きなトレーニングジョブを定期的に処理するお客様もおられます。 ご想像どおり、これらの長いトレーニング時間は ML プロジェクトの深刻なボトルネックであり、生産性を損なうと共に、イノベーションを遅らせています。お客様から助けを求められた AWS は、この問題の解決に乗り出しました。 Amazon SageMaker のデータ並列化のご紹介 SageMaker Data Parallelism (SDP) ライブラリのおかげで、Amazon SageMaker を使って ML チームによる分散型トレーニングの時間とコストの削減を実現することが可能になりました。TensorFlow […]

Read More

エッジデバイスでの機械学習モデルの運用をシンプル化する Amazon SageMaker Edge Manager

今日は、エッジデバイスフリートでの機械学習モデルの最適化、セキュア化、監視、および維持を容易にする Amazon SageMaker の新機能、Amazon SageMaker Edge Manager についてお知らせしたいと思います。 エッジコンピューティングが情報テクノロジーにおける最もエキサイティングな展開のひとつであることは明らかです。実際に、コンピューティング、ストレージ、ネットワーキング、およびバッテリテクノロジーの絶え間ない進歩のおかげで、組織は、製造、エネルギー、農業、およびヘルスケアなどのさまざまな産業用途のために、多数の埋め込みデバイスを世界のあらゆる場所で日常的にデプロイしています。シンプルなセンサーから大型の産業用マシンにおよぶデバイスには、望ましくない状態が検出された場合にアラートを送信するなど、データをキャプチャして分析し、措置を講じるという共通の目的があります。 機械学習 (ML) の幅広いビジネス問題を解決する能力はすでに実証されているため、お客様は、ローカルデータからより深い洞察を得るための取り組みの一環として、モデルをクラウドでトレーニングし、それらをエッジにデプロイすることでエッジへの ML の適用を試みておられますが、エッジデバイスの遠隔性と制約された性質により、エッジでのモデルのデプロイメントと管理は困難を極めることがよくあります。 たとえば、複雑なモデルは大きすぎて収まりきらないことがあり、お客様は小規模で精度に欠けるモデルを使用することで妥協せざるを得なくなります。また、同じデバイスでの複数のモデルを使用した予測 (たとえば、異なるタイプの異常の検出など) には、ハードウェアリソースを節約するために、オンデマンドでモデルをロードおよびアンロードする追加のコードが必要になる場合があります。そして、現実世界は常に、どのトレーニングセットの予想よりも複雑で不規則なものであるため、予測品質の監視は大きな懸念となります。 お客様から助けを求められた AWS は、これらの課題の解決に乗り出しました。 Amazon SageMaker Edge Manager のご紹介 Amazon SageMaker Edge Manager は、ML エッジデベロッパーが、クラウドまたはエッジで使い慣れたツールを簡単に使用できるようにします。このため、モデルを本番稼働させるために必要な時間と労力を削減しながら、デバイスフリート全体のモデル品質を継続的に監視し、向上させることが可能になります。 ユーザーが Amazon SageMaker でトレーニング、またはインポートしたモデルを元に、SageMaker Edge Manager はまず Amazon SageMaker Neo を使用してハードウェアプラットフォーム向けにモデルを最適化します。2 年前にローンチされた Neo は、低フットプリントのランタイムによってデバイス上で実行される効率的な共通のフォーマットにモデルを変換します。Neo は現在、Ambarella、ARM、Intel、NVIDIA、NXP、Qualcomm、TI、および Xilinx によって製造されたチップを基盤とするデバイスをサポートしています。 次に、SageMaker Edge Manager はモデルをパッケージ化し、それを Amazon Simple Storage […]

Read More

数十億ものパラメータを持つ深層学習モデルのトレーニングをシンプル化する Amazon SageMaker

今日は、ハードウェアの制限が原因で、これまでトレーニングすることが難しかった超大型深層学習モデルのトレーニングを Amazon SageMaker がシンプル化することをご紹介したいと思います。 過去 10 年の間、深層学習 (DL) と呼ばれる機械学習のサブセットが一世を風靡してきました。ニューラルネットワークを基盤とする DL アルゴリズムは、膨大な量の非構造化データ (画像、動画、スピーチ、またはテキストなど) に隠された情報パターンを抽出する、類いまれな能力を備えています。DL は、さまざまな複雑かつ人間的なタスク、特にコンピュータビジョンと自然言語処理において、瞬く間に目覚ましい成果を達成しました。現に、DL は ImageNet Large Scale Visual Recognition Challenge (ILSVRC)、the General Language Understanding Evaluation (GLUE)、または Stanford Question Answering Dataset (SQUAD) といったリファレンスタスクにおける結果を向上させ続けているため、イノベーションがかつてない速さで進んでいます。 これまで以上に複雑なタスクに挑戦するために、DL 研究者はますます高度なモデルを設計し、さらなるニューロン層と結合を追加してパターン抽出と予測精度を向上させており、モデルサイズに直接的な影響を及ぼしています。たとえば、画像分類では 100 メガバイトの ResNet-50 モデルで極めて良好な結果を得ることができますが、オブジェクト検出やインスタンスセグメンテーションなどのより困難なタスクには、約 250 メガバイトの Mask R-CNN または YOLO v4 などのより大きなモデルを使用しなければならなくなります。 想像がつくと思いますが、モデルの増大もモデルのトレーニングに必要な時間とハードウェアリソースに影響します。Graphical Processing Units (GPU) が以前から大型 DL モデルのトレーニングと微調整に好まれるオプションであるのはこのためです。GPU の超並列的なアーキテクチャと大型のオンボードメモリのおかげで、ミニバッチトレーニングと呼ばれる手法の使用が可能になります。複数のデータサンプルを、ひとつずつではなく、一度に […]

Read More

新機能 – バイアスを検出し、機械学習モデルの透明性を向上させる Amazon SageMaker Clarify

今日は、お客様が機械学習 (ML) モデルのバイアスを検出し、ステークホルダーと顧客にモデルの動作を説明できるようにすることで透明性を高めるために役立つ Amazon SageMaker の新機能、Amazon SageMaker Clarify をご紹介します。 ML モデルは、データセットに存在する統計的パターンを学習するトレーニングアルゴリズムによって構築されるため、いつくかの疑問がすぐさま思い浮かびます。第一に、ML モデルが特定の予測にたどり着いた理由を説明できるようになるのか? 第二に、モデル化しようとしている現実問題をデータセットが忠実に表現しない場合はどうなるのか? そもそも、このような問題を検出することはできるのか? これらの問題は、認識できない形で何らかのバイアスを生じないのか? これから説明するとおり、これらは決して推論的な疑問ではなく、極めて現実的なもので、その影響は広範囲に及ぶ可能性があります。 バイアス問題から始めましょう。不正なクレジットカード決済を検出するモデルに取り組んでいることを想像してください。幸いにも、決済の大部分は正当なものであり、データセットの 99.9% を占めています。これは、不正決済が 0.1% のみであることを意味し、100,000 件のうち 100 件といったところです。二値分類モデル (正当な決済 vs. 不正な決済) のトレーニングでは、モデルが多数派グループに強い影響を受ける、つまりバイアスがかかる可能性が非常に高くなります。実際に、トリビアルモデルでは決済が常に正当であると判断されてしまうかもしれません。このモデルはまったく役に立たないものの、99.9% は正しいことになります! このシンプルな例から、データの統計的特性、そしてモデルの精度を測定するために使用するメトリクスをどれほど慎重に扱わなければならないかがわかります。 この過少出現問題には多数の派生タイプがあります。クラス、特徴、およびユニークな特徴量が増加しても、データセットには特定のグループについて少量のトレーニングインスタンスしか含まれていない可能性があります。実際、これらのグループの一部は、性別、年齢範囲、または国籍など、さまざまな社会的にセンシティブな特徴に該当することがあります。このようなグループの過少出現は、予測結果に不均衡な影響をもたらす恐れがあります。 残念ながら、悪意がまったくなかったとしても、データベースにバイアス問題が存在し、ビジネス、倫理、および規制面での影響を伴うモデルに取り込まれてしまう可能性があります。このため、モデル管理者が本番環境システムにおけるバイアスの潜在的な原因に注意することが重要になるのです。 では、説明可能性の問題についてお話しましょう。線形回帰や決定木ベースのアルゴリズムといったシンプルで十分に解明されているアルゴリズムでは、モデルを検証し、モデルがトレーニング中に学習したパラメータを調べ、モデルが主に使用する特徴を特定することは比較的簡単です。その後、このプロセスがビジネス慣行に沿っているかどうかを判断できます (つまり、「人間のエキスパートでもこうしただろう」と言うようなものです)。 しかし、モデルがますます複雑になるにつれて (深層学習さん、あなたのことです)、このような分析は不可能になります。スタンリー・キューブリックの「2001 年宇宙の旅」に出てくる先史時代の部族と同じように、私たちはしばしば、不可解なモノリスをまじまじと見詰めながら、それが何を意味するのか頭をかしげるしかありません。多くの企業と組織は、ML モデルを本番環境で使用する前に、それらを説明可能なものにする必要があるかもしれません。さらに、一部の規制では、ML モデルが重大な意思決定の一環として使用される場合に説明可能性が義務付けられている場合があり、この説明可能性は、最初にお話したバイアスの検出にも役立ちます。 こうして、データセットとモデルに存在するバイアスを検出し、モデルが予測を行う方法を理解するための援助をお客様から求められた AWS は、作業を開始し、SageMaker Clarify を考案しました。 Amazon SageMaker Clarify のご紹介 SageMaker Clarify は、AWS の完全マネージド型 ML サービスである Amazon […]

Read More

新機能 — Amazon SageMaker Feature Store で機械学習の機能を格納、発見、共有する

今回、 Amazon SageMaker Feature Store を発表できることを、非常に喜ばしく思います。この Amazon SageMaker の新機能により、トレーニングや予測ワークフローで使用するために精選されたデータの安全な保存、検出、共有などを、データサイエンティストや機械学習エンジニアが容易に実施できるようになります。 作業経験が豊富な方であれば、機械学習 (ML) モデルをトレーニングし適切なアルゴリズムを選択するためには、高品質のデータを供給することがいかに重要かをご存知だと思います。ML のワークフローとして、最初にデータをクリーニングするのは良い考えです。さらに通常は、欠損値の補完、外れ値の削除、その他の処理が行われることになります。さらに多くの場合では、「特徴エンジニアリング」 と呼ばれる (一般的なものと難解なもの両方の手法がミックスされた) 手法により、データの変換が行われます。 特徴エンジニアリングの目的とは、簡単に言えば、表現性が高まるようにデータを変換して、アルゴリズムの学習を助けるということです。例えば、多くの列型データセットには、住所などの文字列が含まれています。ほとんどの ML アルゴリズムにとって、文字列は無意味なので、これらを数値表現でエンコードしなおす必要が生じます。この住所の文字列の場合であれば、GPS 座標に置き換えることができます。この形式なら、位置の概念を学ぶアリゴリズムにとって、より表現性が高いものになります。言い方を変えると、データが新しい石油だとすれば、モデルが成層圏の精度を得るのに必要とする高オクタン価のジェット燃料に、その石油を変える精製プロセスが、特徴エンジニアリングだと言えます。 実際、ML の実務担当者達は、特徴エンジニアリング用にコードを作成し、そのコードを初期データセットに適用し、処理されたデータセットでモデルをトレーニングた上でその精度の評価を行うことに、多くの時間を費やしています。この作業は実験的な性質を持つため、たとえ最小規模のプロジェクトであっても、複数回の反復が必要になることがあります。同じ特徴エンジニアリングコードが何度も実行されることも多く、同じ操作の繰り返により時間と計算リソースが浪費されます。こういった事情は、大規模な組織では、さらなる生産性の低下を引き起こすこともあり得ます。多くの場合で異なるチームが同じジョブを実行していたり、以前の作業に関する情報がないために特徴エンジニアリング用のコードを重複して記述したりするのが、その理由です。 また、MLチームには、解決しなければならない別の難しい問題もあります。モデルは処理が施されたデータセットでトレーニングされるているため、予測のために送信されるデータにも、同じ変換を適用することが不可欠となるのです。これは多くの場合、異なる言語で書きなおした特徴エンジニアリングコードを予測ワークフローに統合して、予測の処理時に実行する、ということを意味します。また、こういったプロセスの全体により、時間が消費されるだけでなく、一貫性を損なう可能性もあります。なぜなら、データ変換の最も小さな差異でさえ、予測には大きな影響を与え得るからです。 これらの問題を解決するために、しばしば ML チームは、フィーチャストアを構築します。フィーチャストアとは、トレーニングや予測ジョブで使用される処理済みデータを保持および取得できる、中央リポジトリのことです。フィーチャストアは便利ですが、独自のストアを構築および管理することは、技術、インフラストラクチャ、そして運用の面で多大な労力を要し、実際の ML 作業のための貴重な時間を奪ってしまいます。こういった状況に対する、よりよいソリューションをお客様から求められ、当社では、新サービスを作ることになりました。 Amazon SageMaker Feature Store のご紹介 Amazon SageMaker Feature Store は、ML 機能のための完全マネージド型で一元化されたリポジトリです。インフラストラクチャを管理することなく、特徴データを安全に保管および取得できます。Feature Store は、Amazon SageMaker に組み込まれています。SageMaker は、あらゆるアルゴリズムをサポートしている、ML 用の完全マネージド型サービスです。さらに Feature Store は、ウェブベースの ML 用開発環境である Amazon SageMaker Studio とも統合されています。 SageMaker […]

Read More

新機能 — Amazon SageMaker Pipelines が機械学習プロジェクトに DevOps 機能を提供

本日、 Amazon SageMaker Pipelines を発表することができまして、大変うれしく思います。これは Amazon SageMaker の新機能で、データサイエンティストやエンジニアが、エンドツーエンドの機械学習パイプラインを簡単に構築、自動化、スケールできるようになります。 機械学習 (ML) はもともと試験段階にあり、本質的に予測することはできません。数日から数週間かけてさまざまな方法でデータを分析および処理します。これは、ジオード (晶洞石) を壊して、貴重な宝石を見つけようとする作業のようです。次に、さまざまなアルゴリズムとパラメータを試しながら、最高の精度を求めて多くのモデルをトレーニングおよび最適化します。この作業は通常、アルゴリズムとパラメータの間に依存関係がある多くの異なる手順を伴い、手作業で管理するため、とても複雑になる可能性があります。特に、モデル系列の追跡は簡単ではなく、監査性やガバナンスを妨げます。最後に、上位モデルをデプロイし、参照テストセットに対するモデルの評価を行います。最後に、 と言いましたが、実際には何度も反復して、新しいアイデアを試し、新しいデータでモデルを定期的に再トレーニングします。 ML がどんなにエキサイティングであっても、残念ながら多くの繰り返し作業を伴います。小規模なプロジェクトでも、本番環境に移る前には何百もの手順が必要になります。こうした作業のせいで、時間の経過とともにプロジェクトの楽しさや興奮が失われていくだけでなく、監視する必要性やヒューマンエラーの可能性が大きくなります。 手作業を軽減し、トレーサビリティを向上させるために、多くの ML チームでは DevOps の理念を採用し、継続的インテグレーションと継続的配信 (CI/CD) 用のツールとプロセスを実装しています。確かにこれは正しい手順といえますが、独自のツールを作成することで、当初の予想よりも多くのソフトウェアエンジニアリングとインフラストラクチャ作業が必要な複雑なプロジェクトとなる場合が多いです。貴重な時間とリソースが実際の ML プロジェクトから奪われ、革新のペースがスローダウンします。残念ながら一部のチームでは、手作業でのモデルの管理、承認、デプロイに戻ることにしました。 Amazon SageMaker Pipelines のご紹介 簡単に言うと、Amazon SageMaker Pipelines で、ML プロジェクトの DevOps がトップレベルになります。この新機能により、データサイエンティストや ML デベロッパーは、自動化された、信頼性の高いエンドツーエンドの ML パイプラインを簡単に作成できるようになります。SageMaker は通常どおり、すべてのインフラストラクチャを完全に管理するため、お客様が作業を行う必要はありません。 Care.com は、高品質の介護サービスを見つけて管理するための世界をリードするプラットフォームです。Care.com のデータサイエンスマネージャーの Clemens Tummeltshammer 氏は次のように言います「 需要と供給が均衡な、力のある介護業界は、個々の家庭から国の GDP にいたる経済成長にとって不可欠です。私たちは Amazon SageMaker Feature Store と […]

Read More

機械学習用のデータを準備するためのビジュアルインターフェイス、Amazon SageMaker Data Wrangler のご紹介

本日、Amazon SageMaker の新たな機能であるAmazon SageMaker Data Wranglerを発表できることを非常に嬉しく思います。これを利用することで、データサイエンティストやエンジニアは、ビジュアルインターフェイスを使用した機械学習 (ML) アプリケーションのデータ準備をより速く行うことができます。 データサイエンティストと機械学習エンジニアのグループに、機械学習における問題の調査に実際、どのくらい時間を費やすのかを尋ねるたびに、私はよく多くのため息と、それに続く「運が良ければ 20% です」というせりふに沿った答えを聞きます。その理由を尋ねると、答えはいつでも同じです、「データ準備に、常に時間の 80% を費やしています。」 実際、トレーニングのためのデータ準備は、機械学習のプロセスにおける重要なステップであり、そこで下手な仕事をしようとは誰も考えないでしょう。一般的なタスクは次のとおりです。 データの特定: 未加工データの格納場所の検索、データへのアクセス データの可視化: データセット内の各列の統計的性質の検証、ヒストグラムの構築、外れ値の調査 データのクリーニング: 重複の削除、欠損値のエントリの入力または削除、外れ値の削除 データの強化および特徴エンジニアリング: 列の処理によるより表現力のある特徴データの構築、トレーニングのための特徴データのサブセットの選択 新しい機械学習プロジェクトの初期段階において、これは直感と経験が大きな役割を果たす高度な手動プロセスです。データサイエンティストは、多くの場合、pandas や PySpark などのオープンソースツールやオープンソースツールの組み合わせを使用して、さまざまなデータ変換の組み合わせを試し、モデルをトレーニングする前にデータセットを処理します。その後、予測結果を分析し、反復処理を行います。同じくらい重要ですが、このプロセスを何度も繰り返しループするのは、時間がかかり面倒であると同時に、エラーが発生しやすくなります。 ある時点で、適切なレベルの精度 (または選択した他のすべてのメトリクス) に達すると、本番環境の完全なデータセットでトレーニングしたいと考えるでしょう。しかし、まずはサンドボックス内で実験した正確なデータ準備のステップを再現および自動化する必要があります。残念ながら、この作業のインタラクティブな性質を考慮すると、慎重に文書化していても、常にエラーの余地があります。 最後に大事なことですが、最終段階に進む前に、データ処理インフラストラクチャを管理および拡張する必要があります。今考えれば、このすべてを行うには、80% の時間では十分ではないかもしれません。 Amazon SageMaker Data Wrangler のご紹介 Amazon SageMaker Data Wrangler は、機械学習用に完全に管理された統合開発環境 (IDE) である Amazon SageMaker Studio に統合されています。数回クリックするだけで、データソースへの接続、データの探索と視覚化、組み込み変換および独自の変換の適用、自動生成されたスクリプトへの結果コードのエクスポート、マネージドインフラストラクチャでの実行が可能です。各ステップをより詳しく見ていきましょう。 もちろん、データ準備は、データを特定してアクセスすることから始まります。SageMaker Data Wrangler を使用すると、導入してすぐに Amazon Simple Storage Service […]

Read More

Amazon SageMaker JumpStart で事前構築済みモデルと機械学習ソリューションへのアクセスを簡素化する

本日、Amazon SageMaker の新機能である Amazon SageMaker JumpStart の提供を開始したことを発表します。人気の高いモデルのコレクション (別名「モデルズー」) および一般的なユースケースを解決するエンドツーエンドのソリューションに、ワンクリックでアクセスして機械学習ワークフローを高速化することができます。 近年、機械学習はビジネスプロセスの改善と自動化に役立つ技術であることが証明されています。実際、過去データでトレーニングされたモデルは、金融サービス、小売、製造、通信、ライフサイエンスといった幅広い業界において結果を高精度に予測できます。しかし、これらのモデルの使用には、データセットの準備、アルゴリズムの選択、モデルのトレーニング、精度の最適化、本番稼働環境へのデプロイ、パフォーマンスの経時的モニタリングといった、一部の科学者やデベロッパーだけが有しているスキルと経験が必要になります。 モデルの構築プロセスを簡素化するために、機械学習コミュニティは、モデルズーと呼ばれる、人気の高いオープンソースライブラリによるモデルのコレクションを作成しました。モデルズーは多くの場合、リファレンスデータセットで事前トレーニングされています。例えば、TensorFlow Hub や PyTorch Hub では、デベロッパーは多数のモデルをダウンロードして、コンピュータビジョンや自然言語処理などのアプリケーションに統合することができます。 モデルのダウンロードは第一歩にすぎません。デベロッパーはその後、TensorFlow Serving および TorchServe モデルサーバーといったさまざまなツール、または独自のカスタムコードを使用してモデルをデプロイし、評価とテストを行う必要があります。モデルを実行したら、デベロッパーは受信データの適切な形式を把握する必要があります。これは以前からの悩みの種です。毎回ここで頭を抱えているのは私だけではないでしょう。 もちろん、完全な機械学習アプリケーションには通常、多くの不確定要素があります。データを事前処理して、バックエンドから取得した追加データでエンリッチメントを行い、モデルに投入する必要があります。予測は多くの場合、後処理され、さらなる分析や視覚化を行うために保存されます。モデルズーは有用ですが、役に立つのはモデリング段階でのみです。完全な機械学習ソリューションが提供できるようになるまでにデベロッパーが行うべき作業は、まだたくさんあります。 そのため、機械学習エキスパートには、プロジェクトのバックログが殺到します。一方で経験の少ないプラクティショナーは、開始するまでに苦労します。これらの障壁は大変苛立たしいものです。お客様からもこの問題への対処を求められました。 Amazon SageMaker JumpStart のご紹介 Amazon SageMaker JumpStart は、機械学習用の完全な統合開発環境 (IDE) である Amazon SageMaker Studio に統合されているため、モデルやソリューションなどを直感的に見つけることができます。ローンチ時の SageMaker JumpStart には、以下が含まていれます。 不正検出や予知保全といった、一般的な機械学習ユースケースに対応する 15 以上のエンドツーエンドソリューション コンピュータビジョン (画像分類、物体検出) および自然言語処理 (文章分類、質問応答) に対応する、TensorFlow Hub および PyTorch Hub で公開されている 150 以上のモデル […]

Read More

予知保全を可能にするシンプルでコスト効率性に優れた Amazon Monitron

本日、Amazon Monitron を発表しました。Amazon Monitron は状態モニタリングサービスで、潜在的な障害の検出、および開発中の誤りの追跡により、予知保全を実施し、予期しないダウンタイムを低減できます。 実話:数ヶ月前、私は新しい洗濯機を購入しました。配達業者が地下室にそれを設置した時に、最近製品は数年も持たなく、信頼できなくなっていることについて雑談しました。彼が去ろうした時に、私は老朽化してメンテナンスが不十分な給湯器を指さし、数週間後にこれを新しいものと交換することを伝えました。信じがたいことに、次の日それが壊れました。どうぞ、笑ってください。事前に計画していないので当然のことです。 この出来事には苛立ちましたが、生産ラインや倉庫などの産業環境で機械の予期せぬ故障による時間やコストの巨大な損失に比べれば、何てことありません。砂粒が原因で予定外の停止が起こることもあります。事は最悪の形で、最悪の時に起こる可能性が高い、そして結果として、深刻なビジネスへの影響をもたらすということを、マーフィーの法則から学びました。 故障を回避するために、信頼性マネージャやメンテナンス技術者が次の 3 つの戦略を組み合わせることがよくあります。 故障まで実行 :確実に動作しなくなるまで、メンテナンスをせずに機器を操作させる。修理の完了後、機器を稼働状態に戻す。ただし、機器の状態は不明で、故障は制御不能です。 計画的保守 : 状態に関係なく、事前定義された保守作業が定期的または計量の基準で実行される。計画的なメンテナンス活動の有効性は、メンテナンスの指示や計画するサイクルの良し悪しに依存します。機器のメンテナンスが過剰だったり、あるいは不十分だったりする場合に、不必要なコストが発生したり、故障が発生したりする危険性があります。 状態基準保全 : 監視対象コンポーネントの状態が定義済みのしきい値を超えたときにメンテナンスを完了させる。耐性、振動、温度などの物理的特性を監視することは、より適切な戦略です。これにより、メンテナンスの必要性やメンテナンスコストを低減できます。 予知保全 : コンポーネントの状態を監視し、潜在的な障害を検出し、障害の発生を追跡する。メンテナンスは、将来予想される障害発生の前に、且つメンテナンスの総コストが最も効率の高いときに計画します。 状態基準保全と予知保全では、重要な機器にセンサーを設置する必要があります。これらのセンサは、温度や振動などの物理量を測定し、取得します。その変化は、潜在的な故障または悪化状態の先行指標となります。 ご想像のとおり、このようなメンテナンスシステムの構築と導入には、特注のハードウェア、ソフトウェア、インフラストラクチャ、プロセスなどが必要で、長期的かつ複雑でコストのかかるプロジェクトになる可能性があります。お客様から支援を求められ、この事業に取り組みました。 Amazon Monitron のご紹介 Amazon Monitron は、簡単に利用ができて、費用対効果の高い監視サービスで、施設内の機器の状態を監視し、予知保全プログラムを実施します。 Amazon Monitron の設定はとても簡単です。まず、 Monitron センサーをインストールします。これで、ベアリング、ギアボックス、モーター、ポンプ、コンプレッサ、ファンなどの回転機械から振動と温度データを取得します。センサーは、Bluetooth Low Energy (BLE) 技術を使用して、振動と温度の測定値を近くの Monitron ゲートウェイに毎時送信します。センサーを少なくとも 3 年間稼働させることができます。 Monitron ゲートウェイ自体は WiFi ネットワークに接続され、センサーデータを AWS に送信します。データは格納され、機械学習と ISO 20816 振動関連規格を使用して分析されます。 通信頻度が低いため、最大 20 個のセンサーを 1 […]

Read More