Amazon Web Services ブログ

Category: Amazon Rekognition

AWS CloudFormation と AWS SAM を使用したサーバーレスアプリケーションの開発とデプロイ

お客様は、それぞれの市場で競争力を維持するために、常にイノベーションを求めています。これを達成するための1つの方法は、サービスとアプリケーションを迅速かつ効率よく構築し、それによってコストを削減しながら市場投入までの時間を短縮することです。より具体的には、アプリケーション全体をゼロから構築するよりも、サーバーレスや AI/ML などのクラウドネイティブな機能を活用して管理コストを削減したり、目的別に作られたサービスを組み合わせたり、すでに構築済みのアプリケーションを再利用したりすることが有効です。 このブログ記事では、AWS Serverless Application Model (AWS SAM) と AWS CloudFormation を使用して、サーバーレスアプリケーションをビルドしてデプロイする方法を説明します。また、AWS Serverless Application Repository を使用して既存のアプリケーションを再利用し、開発時間を短縮します。

Read More

機械学習と AWS Inferentia を使用した広告検証のスケーリング

Amazon Advertising は、15 を超える国々のウェブサイト、アプリケーション、ストリーミング TV コンテンツなど、Amazon のストア内外の両方で表示される広告を通じて、企業がブランドを構築し、お買い物をするお客様とつながるのをサポートします。Amazon Marketplace の登録販売者、ベンダー、書籍ベンダー、Kindle ダイレクトパブリッシング (KDP) の著者、アプリケーションデベロッパー、代理店など、あらゆる規模の企業やブランドが、独自の広告クリエイティブをアップロードできます。これには、画像、動画、音声のほか、Amazon で販売されている商品ももちろん含まれます。正確、安全、快適なショッピング体験を促進するために、これらの広告はコンテンツガイドラインに準拠している必要があります。 ここでは簡単な例を挙げます。次の広告のうち 2 つが準拠していない理由がおわかりでしょうか?

Read More
stream-tennis-matches-through-aws-elemental-medialive-and-generate-real-time-replays-with-amazon-rekognition

AWS Elemental MediaLiveとAmazon Rekognitionでリプレイ映像をリアルタイムで作成する~ テニスでの活用例 ~

放送局では自動化による運用コスト削減のために、クラウドを利用するケースが増えています。例えば、スポーツのライブ中継では、リプレイ映像が利用されます。この作業は従来、編集者が手作業で行っていました。編集者はイベント全体を見て、注目すべきセグメントの開始(マークイン)と終了(マークアウト)のタイムスタンプにフラグを立てます。そして、これらのセグメントをつなぎ合わせて、様々な長さのリプレイを作成します。最新の機械学習(ML)技術を使えば、このような手間のかかる作業を人手を介さずに自動的に行うことができます。この記事ではテニスの試合を例に、AWS Elemental MediaLiveによるビデオストリーミングと、Amazon Rekognitionによるリアルタイムのリプレイ生成を紹介します。

Read More

2021 メディア業界のお客様向け AWS 勉強会 第三回「メディア系 AWS 活用事例紹介 ~ 新聞・出版 ~」

2021/07/07 にメディア業界のお客様向けにAWS勉強会を開催いたしました。第三回ではこれからクラウド・コンピューティング、 AWS の利用を検討される皆様へ、新聞・出版業界にフォーカスして事例をご紹介しています。資料のダウンロードおよび動画の視聴は下記のリンクからご利用頂けますので、合わせてご確認ください。 資料のダウンロード及び動画の視聴リンク それではここから当日のセッションの内容について簡単にご紹介させていただきます。

Read More

【開催報告 & 資料公開】 AI/ML@Tokyo #10 これからAI/MLを始めるために

アマゾン ウェブ サービス ジャパン株式会社 機械学習ソリューションアーキテクトの大渕です。AWS Japan では、AI/ML 関連情報を発信するイベント「AWS AI/ML@Tokyo」を定期的に開催しています。2021年4月8日にオンラインで開催された AWS AI/ML@Tokyo #10 では、AWS の機械学習ソリューションアーキテクト 鮫島より AWS で始める Machine Learning Journey についてご紹介し、また、お客様事例として、三菱UFJトラスト投資工学研究所 須田様よりAmazon SageMaker を活用した実践・金融データサイエンスについて、DXYZ株式会社 安永様よりAWSを利用した顔認証IDプラットフォーム構築と Amazon Rekognition 活用事例についてお話いただきました。

Read More
Media Seminar Q1 Fuji TV

【お客様事例】株式会社フジテレビジョン様 Amazon Rekognition 「メタロウ」の開発と検証

2021年3月18日にメディア業界のお客様向けに Analytics & AI/ML をテーマとしたセミナーを開催いたしました。テレビ・動画配信・新聞・雑誌などのメディア企業では、デジタル変革の中でデータを活用する重要性が高まっています。本セミナーではメディア企業がデータを活用し、新たなビジネスを展開していくかに焦点をあて、データをどのように最新の AI/ML 技術を用い活用していくのかをご紹介させていただきました。

Read More

2021Q1 メディア企業向け Analytics & AI/ML セミナー : メディア企業での機械学習の活用

2021 年 3 月 18 日にメディア業界のお客様向けに Analytics & AI/ML をテーマとしたセミナーを開催いたしました。テレビ・動画配信・新聞・雑誌などのメディア企業では、デジタル変革の中でデータを活用する重要性が高まっています。本セミナーではメディア企業がいかにデータを活用し、新たなビジネスを展開していくかに焦点をあてた機械学習の活用方法をご紹介し、お客様に事例をご説明いただきました。

Read More

Amazon Lookout for Vision 東京リージョンで一般提供開始のお知らせとオンデマンドウェビナーのご紹介

みなさん、こんにちは。アマゾン ウェブ サービス ジャパン、シニアエバンジェリストの亀田です。 コンピュータービジョンを使用した、視覚表現の欠陥や異常の発見を実現する Amazon Lookout for Vison が東京リージョンで一般提供が開始されました。また2021 年 2 月 25 日現在、開催中のAWS Innovate AI/ML Edition で日本語によるオンデマンドウェビナーが視聴可能になっています。 Amazon Lookout for Vision の仕組み 2020 年 11 月 30 日から 3 週間にわたって開催されたAWS re:Invent 2020 で発表された新しいサービスで、コンピュータービジョン (CV) を使用して視覚表現の欠陥や異常を発見することを実現できる機械学習 (ML) サービスです。対象の画像の違いを大規模で速やかに特定することで、品質を向上させ、従来の目視による検査における運用コストなどを削減できます。たとえば、主な利用用途として、製品に不足しているコンポーネント、車両や構造物の損傷、生産ラインの不規則性、シリコンウェーハの微小な欠陥、その他の同様の問題を特定することができます。

Read More

Amazon SageMaker Ground Truthを利用した動画ラベリングとAmazon Rekognition Custom Labelsへのインポート

「Amazon Rekognition Custom Labelsを利用した動物の特徴的な行動検出」にて、行動検知モデル作成手順について紹介致しましたが、本ブログではモデル作成の重要なステップであるAmazon SageMaker Ground Truthを利用した動画のデータラベリングをご紹介します。合わせて、2021年1月時点ではAmazon SageMaker Ground Truthでラベリングした動画データをAmazon Rekognition Custom Labelsのデータセットとしてそのままインポートできません。そのため、ここではインポートするためのマニフェストファイルの記述方法をご紹介します。 ラベリングデータを利用した一般的な機械学習のワークフローは以下になります。このフローでモデルの精度向上に重要なのはラベリングデータの準備になります。もちろん、モデル開発やモデル学習に時間はかかると思います。しかし多くの場合、モデル開発に関しては既存もしくは機械学習のスペシャリストが作成したアルゴリズムやモデルを選定する事で開発の短縮化が行えますし、モデル学習についてもクラウドリソース(例えばGPUインスタンス)を利用することで学習時間の短縮化を行えます。そうすると、時間がかかるのがラベリングデータの準備であり、ラベリングの効率化・質の高いデータ数を増やす事が重要なポイントになります。このラベリングデータの準備を簡素化するツールとして、Amazon SageMaker Ground Truthがあります。

Read More
AWSデジタルトランスフォーメーション

【開催報告 & 資料公開】 AI/ML@Tokyo #8 エンタープライズにおけるDXとAI/ML 開催報告

アマゾン ウェブ サービス ジャパン株式会社 機械学習ソリューションアーキテクトの伊藤です。AWS Japan では、AI/ML 関連情報を発信するイベント「AWS AI/ML@Tokyo」を定期的に開催しています。2020年11月26日にオンラインで開催された AWS AI/ML@Tokyo #8では、AWSのAI/ML事業開発シニアスペシャリストより、エンタープライズ企業におけるAI/機械学習プロジェクトの進め方をご紹介し、ソリューションアーキテクトより、手軽に導入できるAIサービスを活用した実際のユースケースのご紹介をいたしました。また、お客様活用事例として、株式会社 JAL インフォテック様、三菱UFJインフォメーションテクノロジー株式会社様 におけるAIサービスや Amazon SageMaker を活用したDX事例をお話しいただきました。

Read More