Publicado: Dec 8, 2020

O Amazon Braket agora suporta o PennyLane, uma estrutura de trabalho de software de código aberto para computação quântica híbrida. P Pennylane oferece interfaces para bibliotecas de machine learning comuns, incluindo PyTorch e TensorFlow, para que você possa treinar circuitos quânticos da mesma forma que treinaria uma rede neural. A integração com o Amazon Braket permite testar e ajustar os algoritmos de forma mais rápida e em maior escala em simuladores escalonáveis e totalmente gerenciados, e executá-los na sua opção de hardware de computação quântica.

Os algoritmos quânticos híbridos utilizam uma abordagem iterativa com computadores quânticos agindo como co-processadores dos recursos computacionais clássicos. Esta abordagem ajuda a amenizar o efeito dos erros inerentes ao hardware de computação quântica atual. Com o PennyLane, o Amazon Braket proporciona uma experiência fácil, intuitiva e de alto desempenho para que seja possível começar a utilizar algoritmos quânticos híbridos. Ao combinar o PennyLane com os simuladores gerenciados do Amazon Braket para testar e ajustar seus algoritmos, é possível conseguir uma redução de 10x ou mais nos tempos de treinamento ao utilizar a execução de circuitos paralelos, em comparação com a execução de seu algoritmo em uma única máquina.

Os blocos de notas do Amazon Braket vêm pré-configurados com o PennyLane de forma que você possa começar rapidamente. Você também pode instalar o plugin do PennyLane no Amazon Braket se preferir usar seu próprio ambiente de desenvolvimento. O suporte ao PennyLane está disponível nas regiões da AWS em que o Amazon Braket está disponível. Para iniciar os algoritmos quânticos híbridos de programação do PennyLane no Amazon Braket, consulte os blocos de notas de exemplo, o guia do desenvolvedor do Amazon Braket e o repositório de GitHub do PennyLane.