Category: Announcements


AWS Online Tech Talks – August 2017

Welcome to mid-August, everyone–the season of beach days, family road trips, and an inbox full of “out of office” emails from your coworkers. Just in case spending time indoors has you feeling a bit blue, we’ve got a piping hot batch of AWS Online Tech Talks for you to check out. Kick up your feet, grab a glass of ice cold lemonade, and dive into our latest Tech Talks on Compute and DevOps.

August 2017 – Schedule

Noted below are the upcoming scheduled live, online technical sessions being held during the month of August. Make sure to register ahead of time so you won’t miss out on these free talks conducted by AWS subject matter experts.

Webinars featured this month are:

Thursday, August 17 – Compute

9:00 – 9:40 AM PDT: Deep Dive on Lambda@Edge.

Monday, August 28 – DevOps

10:30 – 11:10 AM PDT: Building a Python Serverless Applications with AWS Chalice.

12:00 – 12:40 PM PDT: How to Deploy .NET Code to AWS from Within Visual Studio.

The AWS Online Tech Talks series covers a broad range of topics at varying technical levels. These sessions feature live demonstrations & customer examples led by AWS engineers and Solution Architects. Check out the AWS YouTube channel for more on-demand webinars on AWS technologies.

– Sara (Hello everyone, I’m a co-op from Northeastern University joining the team until December.)

AWS Summit New York – Summary of Announcements

Whew – what a week! Tara, Randall, Ana, and I have been working around the clock to create blog posts for the announcements that we made at the AWS Summit in New York. Here’s a summary to help you to get started:

Amazon Macie – This new service helps you to discover, classify, and secure content at scale. Powered by machine learning and making use of Natural Language Processing (NLP), Macie looks for patterns and alerts you to suspicious behavior, and can help you with governance, compliance, and auditing. You can read Tara’s post to see how to put Macie to work; you select the buckets of interest, customize the classification settings, and review the results in the Macie Dashboard.

AWS GlueRandall’s post (with deluxe animated GIFs) introduces you to this new extract, transform, and load (ETL) service. Glue is serverless and fully managed, As you can see from the post, Glue crawls your data, infers schemas, and generates ETL scripts in Python. You define jobs that move data from place to place, with a wide selection of transforms, each expressed as code and stored in human-readable form. Glue uses Development Endpoints and notebooks to provide you with a testing environment for the scripts you build. We also announced that Amazon Athena now integrates with Amazon Glue, as does Apache Spark and Hive on Amazon EMR.

AWS Migration Hub – This new service will help you to migrate your application portfolio to AWS. My post outlines the major steps and shows you how the Migration Hub accelerates, tracks,and simplifies your migration effort. You can begin with a discovery step, or you can jump right in and migrate directly. Migration Hub integrates with tools from our migration partners and builds upon the Server Migration Service and the Database Migration Service.

CloudHSM Update – We made a major upgrade to AWS CloudHSM, making the benefits of hardware-based key management available to a wider audience. The service is offered on a pay-as-you-go basis, and is fully managed. It is open and standards compliant, with support for multiple APIs, programming languages, and cryptography extensions. CloudHSM is an integral part of AWS and can be accessed from the AWS Management Console, AWS Command Line Interface (CLI), and through API calls. Read my post to learn more and to see how to set up a CloudHSM cluster.

Managed Rules to Secure S3 Buckets – We added two new rules to AWS Config that will help you to secure your S3 buckets. The s3-bucket-public-write-prohibited rule identifies buckets that have public write access and the s3-bucket-public-read-prohibited rule identifies buckets that have global read access. As I noted in my post, you can run these rules in response to configuration changes or on a schedule. The rules make use of some leading-edge constraint solving techniques, as part of a larger effort to use automated formal reasoning about AWS.

CloudTrail for All Customers – Tara’s post revealed that AWS CloudTrail is now available and enabled by default for all AWS customers. As a bonus, Tara reviewed the principal benefits of CloudTrail and showed you how to review your event history and to deep-dive on a single event. She also showed you how to create a second trail, for use with CloudWatch CloudWatch Events.

Encryption of Data at Rest for EFS – When you create a new file system, you now have the option to select a key that will be used to encrypt the contents of the files on the file system. The encryption is done using an industry-standard AES-256 algorithm. My post shows you how to select a key and to verify that it is being used.

Watch the Keynote
My colleagues Adrian Cockcroft and Matt Wood talked about these services and others on the stage, and also invited some AWS customers to share their stories. Here’s the video:

Watch the Twitch Stram
My colleagues Ian Massingham, Tara Walker, and Abby Fuller hosted a live stream on the AWS Twitch channel:

Jeff;

 

AWS CloudHSM Update – Cost Effective Hardware Key Management at Cloud Scale for Sensitive & Regulated Workloads

Our customers run an incredible variety of mission-critical workloads on AWS, many of which process and store sensitive data. As detailed in our Overview of Security Processes document, AWS customers have access to an ever-growing set of options for encrypting and protecting this data. For example, Amazon Relational Database Service (RDS) supports encryption of data at rest and in transit, with options tailored for each supported database engine (MySQL, SQL Server, Oracle, MariaDB, PostgreSQL, and Aurora).

Many customers use AWS Key Management Service (KMS) to centralize their key management, with others taking advantage of the hardware-based key management, encryption, and decryption provided by AWS CloudHSM to meet stringent security and compliance requirements for their most sensitive data and regulated workloads (you can read my post, AWS CloudHSM – Secure Key Storage and Cryptographic Operations, to learn more about Hardware Security Modules, also known as HSMs).

Major CloudHSM Update
Today, building on what we have learned from our first-generation product, we are making a major update to CloudHSM, with a set of improvements designed to make the benefits of hardware-based key management available to a much wider audience while reducing the need for specialized operating expertise. Here’s a summary of the improvements:

Pay As You Go – CloudHSM is now offered under a pay-as-you-go model that is simpler and more cost-effective, with no up-front fees.

Fully Managed – CloudHSM is now a scalable managed service; provisioning, patching, high availability, and backups are all built-in and taken care of for you. Scheduled backups extract an encrypted image of your HSM from the hardware (using keys that only the HSM hardware itself knows) that can be restored only to identical HSM hardware owned by AWS. For durability, those backups are stored in Amazon Simple Storage Service (S3), and for an additional layer of security, encrypted again with server-side S3 encryption using an AWS KMS master key.

Open & Compatible  – CloudHSM is open and standards-compliant, with support for multiple APIs, programming languages, and cryptography extensions such as PKCS #11, Java Cryptography Extension (JCE), and Microsoft CryptoNG (CNG). The open nature of CloudHSM gives you more control and simplifies the process of moving keys (in encrypted form) from one CloudHSM to another, and also allows migration to and from other commercially available HSMs.

More Secure – CloudHSM Classic (the original model) supports the generation and use of keys that comply with FIPS 140-2 Level 2. We’re stepping that up a notch today with support for FIPS 140-2 Level 3, with security mechanisms that are designed to detect and respond to physical attempts to access or modify the HSM. Your keys are protected with exclusive, single-tenant access to tamper-resistant HSMs that appear within your Virtual Private Clouds (VPCs). CloudHSM supports quorum authentication for critical administrative and key management functions. This feature allows you to define a list of N possible identities that can access the functions, and then require at least M of them to authorize the action. It also supports multi-factor authentication using tokens that you provide.

AWS-Native – The updated CloudHSM is an integral part of AWS and plays well with other tools and services. You can create and manage a cluster of HSMs using the AWS Management Console, AWS Command Line Interface (CLI), or API calls.

Diving In
You can create CloudHSM clusters that contain 1 to 32 HSMs, each in a separate Availability Zone in a particular AWS Region. Spreading HSMs across AZs gives you high availability (including built-in load balancing); adding more HSMs gives you additional throughput. The HSMs within a cluster are kept in sync: performing a task or operation on one HSM in a cluster automatically updates the others. Each HSM in a cluster has its own Elastic Network Interface (ENI).

All interaction with an HSM takes place via the AWS CloudHSM client. It runs on an EC2 instance and uses certificate-based mutual authentication to create secure (TLS) connections to the HSMs.

At the hardware level, each HSM includes hardware-enforced isolation of crypto operations and key storage. Each customer HSM runs on dedicated processor cores.

Setting Up a Cluster
Let’s set up a cluster using the CloudHSM Console:

I click on Create cluster to get started, select my desired VPC and the subnets within it (I can also create a new VPC and/or subnets if needed):

Then I review my settings and click on Create:

After a few minutes, my cluster exists, but is uninitialized:

Initialization simply means retrieving a certificate signing request (the Cluster CSR):

And then creating a private key and using it to sign the request (these commands were copied from the Initialize Cluster docs and I have omitted the output. Note that ID identifies the cluster):

$ openssl genrsa -out CustomerRoot.key 2048
$ openssl req -new -x509 -days 365 -key CustomerRoot.key -out CustomerRoot.crt
$ openssl x509 -req -days 365 -in ID_ClusterCsr.csr   \
                              -CA CustomerRoot.crt    \
                              -CAkey CustomerRoot.key \
                              -CAcreateserial         \
                              -out ID_CustomerHsmCertificate.crt

The next step is to apply the signed certificate to the cluster using the console or the CLI. After this has been done, the cluster can be activated by changing the password for the HSM’s administrative user, otherwise known as the Crypto Officer (CO).

Once the cluster has been created, initialized and activated, it can be used to protect data. Applications can use the APIs in AWS CloudHSM SDKs to manage keys, encrypt & decrypt objects, and more. The SDKs provide access to the CloudHSM client (running on the same instance as the application). The client, in turn, connects to the cluster across an encrypted connection.

Available Today
The new HSM is available today in the US East (Northern Virginia), US West (Oregon), US East (Ohio), and EU (Ireland) Regions, with more in the works. Pricing starts at $1.45 per HSM per hour.

Jeff;

New – High-Resolution Custom Metrics and Alarms for Amazon CloudWatch

Amazon CloudWatch has been an important part of AWS since early 2009! Launched as part of a three-pack that also included Auto Scaling and Elastic Load Balancing, CloudWatch has evolved into a very powerful monitoring service for AWS resources and the applications that you run on the AWS Cloud. CloudWatch custom metrics (launched way back in 2011) allow you to store business and application metrics in CloudWatch, view them in graphs, and initiate actions based on CloudWatch Alarms. Needless to say, we have made many enhancements to CloudWatch over the years! Some of the most recent include Extended Metrics Retention (and a User Interface Update), Dashboards, API/CloudFormation Support for Dashboards, and Alarms on Dashboards.

Originally, metrics were stored at five minute intervals; this was reduced to one minute (also known as Detailed Monitoring) in response to customer requests way back in 2010. This was a welcome change, but now it is time to do better. Our customers are streaming video, running flash sales, deploying code tens or hundreds of times per day, and running applications that scale in and out very quickly as conditions change. In all of these situations, a minute is simply too coarse of an interval. Important, transient spikes can be missed; disparate (yet related) events are difficult to correlate across time, and the MTTR (mean time to repair) when something breaks is too high.

New High-Resolution Metrics
Today we are adding support for high-resolution custom metrics, with plans to add support for AWS services over time. Your applications can now publish metrics to CloudWatch with 1-second resolution. You can watch the metrics scroll across your screen seconds after they are published and you can set up high-resolution CloudWatch Alarms that evaluate as frequently as every 10 seconds.

Imagine alarming when available memory gets low. This is often a transient condition that can be hard to catch with infrequent samples. With high-resolution metrics, you can see, detect (via an alarm), and act on it within seconds:

In this case the alarm on the right would not fire, and you would not know about the issue.

Publishing High-Resolution Metrics
You can publish high-resolution metrics in two different ways:

  • API – The PutMetricData function now accepts an optional StorageResolution parameter. Set this parameter to 1 to publish high-resolution metrics; omit it (or set it to 60) to publish at standard 1-minute resolution.
  • collectd plugin – The CloudWatch plugin for collectd has been updated to support collection and publication of high-resolution metrics. You will need to set the enable_high_resolution_metrics parameter in the config file for the plugin.

CloudWatch metrics are rolled up over time; resolution effectively decreases as the metrics age. Here’s the schedule:

  • 1 second metrics are available for 3 hours.
  • 60 second metrics are available for 15 days.
  • 5 minute metrics are available for 63 days.
  • 1 hour metrics are available for 455 days (15 months).

When you call GetMetricStatistics you can specify a period of 1, 5, 10, 30 or any multiple of 60 seconds for high-resolution metrics. You can specify any multiple of 60 seconds for standard metrics.

A Quick Demo
I grabbed my nearest EC2 instance, installed the latest version of collectd and the Python plugin:

$ sudo yum install collectd collectd-python

Then I downloaded the setup script for the plugin, made it executable, and ran it:

$ wget https://raw.githubusercontent.com/awslabs/collectd-cloudwatch/master/src/setup.py
$ chmod a+x setup.py
$ sudo ./setup.py

I had already created a suitable IAM Role and added it to my instance; it was automatically detected during setup. I was asked to enable the high resolution metrics:

collectd started running and publishing metrics within seconds. I opened up the CloudWatch Console to take a look:

Then I zoomed in to see the metrics in detail:

I also created an alarm that will check the memory.percent.used metric at 10 second intervals. This will make it easier for me to detect situations where a lot of memory is being used for a short period of time:

Now Available
High-resolution custom metrics and alarms are available now in all Public AWS Regions, with support for AWS GovCloud (US) coming soon.

As was already the case, you can store 10 metrics at no charge every month; see the CloudWatch Pricing page for more information. Pricing for high-resolution metrics is identical to that for standard resolution metrics, with volume tiers that allow you to realize savings (on a per-metric) basis when you use more metrics. High-resolution alarms are priced at $0.30 per alarm per month.

New – GPU-Powered Streaming Instances for Amazon AppStream 2.0

We launched Amazon AppStream 2.0 at re:Invent 2016. This application streaming service allows you to deliver Windows applications to a desktop browser.

AppStream 2.0 is fully managed and provides consistent, scalable performance by running applications on general purpose, compute optimized, and memory optimized streaming instances, with delivery via NICE DCV – a secure, high-fidelity streaming protocol. Our enterprise and public sector customers have started using AppStream 2.0 in place of legacy application streaming environments that are installed on-premises. They use AppStream 2.0 to deliver both commercial and line of business applications to a desktop browser. Our ISV customers are using AppStream 2.0 to move their applications to the cloud as-is, with no changes to their code. These customers focus on demos, workshops, and commercial SaaS subscriptions.

We are getting great feedback on AppStream 2.0 and have been adding new features very quickly (even by AWS standards). So far this year we have added an image builder, federated access via SAML 2.0, CloudWatch monitoring, Fleet Auto Scaling, Simple Network Setup, persistent storage for user files (backed by Amazon S3), support for VPC security groups, and built-in user management including web portals for users.

New GPU-Powered Streaming Instances
Many of our customers have told us that they want to use AppStream 2.0 to deliver specialized design, engineering, HPC, and media applications to their users. These applications are generally graphically intensive and are designed to run on expensive, high-end PCs in conjunction with a GPU (Graphics Processing Unit). Due to the hardware requirements of these applications, cost considerations have traditionally kept them out of situations where part-time or occasional access would otherwise make sense. Recently, another requirement has come to the forefront. These applications almost always need shared, read-write access to large amounts of sensitive data that is best stored, processed, and secured in the cloud. In order to meet the needs of these users and applications, we are launching two new types of streaming instances today:

Graphics Desktop – Based on the G2 instance type, Graphics Desktop instances are designed for desktop applications that use the CUDA, DirectX, or OpenGL for rendering. These instances are equipped with 15 GiB of memory and 8 vCPUs. You can select this instance family when you build an AppStream image or configure an AppStream fleet:

Graphics Pro – Based on the brand-new G3 instance type, Graphics Pro instances are designed for high-end, high-performance applications that can use the NVIDIA APIs and/or need access to large amounts of memory. These instances are available in three sizes, with 122 to 488 GiB of memory and 16 to 64 vCPUs. Again, you can select this instance family when you configure an AppStream fleet:

To learn more about how to launch, run, and scale a streaming application environment, read Scaling Your Desktop Application Streams with Amazon AppStream 2.0.

As I noted earlier, you can use either of these two instance types to build an AppStream image. This will allow you to test and fine tune your applications and to see the instances in action.

Streaming Instances in Action
We’ve been working with several customers during a private beta program for the new instance types. Here are a few stories (and some cool screen shots) to show you some of the applications that they are streaming via AppStream 2.0:

AVEVA is a world leading provider of engineering design and information management software solutions for the marine, power, plant, offshore and oil & gas industries. As part of their work on massive capital projects, their customers need to bring many groups of specialist engineers together to collaborate on the creation of digital assets. In order to support this requirement, AVEVA is building SaaS solutions that combine the streamed delivery of engineering applications with access to a scalable project data environment that is shared between engineers across the globe. The new instances will allow AVEVA to deliver their engineering design software in SaaS form while maximizing quality and performance. Here’s a screen shot of their Everything 3D app being streamed from AppStream:

Nissan, a Japanese multinational automobile manufacturer, trains its automotive specialists using 3D simulation software running on expensive graphics workstations. The training software, developed by The DiSti Corporation, allows its specialists to simulate maintenance processes by interacting with realistic 3D models of the vehicles they work on. AppStream 2.0’s new graphics capability now allows Nissan to deliver these training tools in real time, with up to date content, to a desktop browser running on low-cost commodity PCs. Their specialists can now interact with highly realistic renderings of a vehicle that allows them to train for and plan maintenance operations with higher efficiency.

Cornell University is an American private Ivy League and land-grant doctoral university located in Ithaca, New York. They deliver advanced 3D tools such as AutoDesk AutoCAD and Inventor to students and faculty to support their course work, teaching, and research. Until now, these tools could only be used on GPU-powered workstations in a lab or classroom. AppStream 2.0 allows them to deliver the applications to a web browser running on any desktop, where they run as if they were on a local workstation. Their users are no longer limited by available workstations in labs and classrooms, and can bring their own devices and have access to their course software. This increased flexibility also means that faculty members no longer need to take lab availability into account when they build course schedules. Here’s a copy of Autodesk Inventor Professional running on AppStream at Cornell:

Now Available
Both of the graphics streaming instance families are available in the US East (Northern Virginia), US West (Oregon), EU (Ireland), and Asia Pacific (Tokyo) Regions and you can start streaming from them today. Your applications must run in a Windows 2012 R2 environment, and can make use of DirectX, OpenGL, CUDA, OpenCL, and Vulkan.

With prices in the US East (Northern Virginia) Region starting at $0.50 per hour for Graphics Desktop instances and $2.05 per hour for Graphics Pro instances, you can now run your simulation, visualization, and HPC workloads in the AWS Cloud on an economical, pay-by-the-hour basis. You can also take advantage of fast, low-latency access to Amazon Elastic Compute Cloud (EC2), Amazon Simple Storage Service (S3), AWS Lambda, Amazon Redshift, and other AWS services to build processing workflows that handle pre- and post-processing of your data.

Jeff;

 

Use CloudFormation StackSets to Provision Resources Across Multiple AWS Accounts and Regions

AWS CloudFormation helps AWS customers implement an Infrastructure as Code model. Instead of setting up their environments and applications by hand, they build a template and use it to create all of the necessary resources, collectively known as a CloudFormation stack. This model removes opportunities for manual error, increases efficiency, and ensures consistent configurations over time.

Today I would like to tell you about a new feature that makes CloudFormation even more useful. This feature is designed to help you to address the challenges that you face when you use Infrastruccrture as Code in situations that include multiple AWS accounts and/or AWS Regions. As a quick review:

Accounts – As I have told you in the past, many organizations use a multitude of AWS accounts, often using AWS Organizations to arrange the accounts into a hierarchy and to group them into Organizational Units, or OUs (read AWS Organizations – Policy-Based Management for Multiple AWS Accounts to learn more). Our customers use multiple accounts for business units, applications, and developers. They often create separate accounts for development, testing, staging, and production on a per-application basis.

Regions – Customers also make great use of the large (and ever-growing) set of AWS Regions. They build global applications that span two or more regions, implement sophisticated multi-region disaster recovery models, replicate S3, Aurora, PostgreSQL, and MySQL data in real time, and choose locations for storage and processing of sensitive data in accord with national and regional regulations.

This expansion into multiple accounts and regions comes with some new challenges with respect to governance and consistency. Our customers tell us that they want to make sure that each new account is set up in accord with their internal standards. Among other things, they want to set up IAM users and roles, VPCs and VPC subnets, security groups, Config Rules, logging, and AWS Lambda functions in a consistent and reliable way.

Introducing StackSet
In order to address these important customer needs, we are launching CloudFormation StackSet today. You can now define an AWS resource configuration in a CloudFormation template and then roll it out across multiple AWS accounts and/or Regions with a couple of clicks. You can use this to set up a baseline level of AWS functionality that addresses the cross-account and cross-region scenarios that I listed above. Once you have set this up, you can easily expand coverage to additional accounts and regions.

This feature always works on a cross-account basis. The administrator account owns one or more StackSets and controls deployment to one or more target accounts. The administrator account must include an assumable IAM role and the target accounts must delegate trust to the administrator account. To learn how to do this, read Prerequisites in the StackSet Documentation.

Each StackSet references a CloudFormation template and contains lists of accounts and regions. All operations apply to the Cartesian product of the accounts and regions in the StackSet. If the StackSet references three accounts (A1, A2, and A3) and four regions (R1, R2, R3, and R4), there are twelve targets:

  • Region R1: Accounts A1, A2, and A3.
  • Region R2: Accounts A1, A2, and A3.
  • Region R3: Accounts A1, A2, and A3.
  • Region R4: Accounts A1, A2, and A3.

Deploying a template initiates creation of a CloudFormation stack in an account/region pair. Templates are deployed sequentially to regions (you control the order) to multiple accounts within the region (you control the amount of parallelism). You can also set an error threshold that will terminate deployments if stack creation fails.

You can use your existing CloudFormation templates (taking care to make sure that they are ready to work across accounts and regions), create new ones, or use one of our sample templates. We are launching with support for the AWS partition (all public regions except those in China), and expect to expand it to to the others before too long.

Using StackSets
You can create and deploy StackSets from the CloudFormation Console, via the CloudFormation APIs, or from the command line.

Using the Console, I start by clicking on Create StackSet. I can use my own template or one of the samples. I’ll use the last sample (Add config rule encrypted volumes):

I click on View template to learn more about the template and the rule:

I give my StackSet a name. The template that I selected accepts an optional parameter, and I can enter it at this time:

Next, I choose the accounts and regions. I can enter account numbers directly, reference an AWS organizational unit, or upload a list of account numbers:

I can set up the regions and control the deployment order:

I can also set the deployment options. Once I am done I click on Next to proceed:

I can add tags to my StackSet. They will be applied to the AWS resources created during the deployment:

The deployment begins, and I can track the status from the Console:

I can open up the Stacks section to see each stack. Initially, the status of each stack is OUTDATED, indicating that the template has yet to be deployed to the stack; this will change to CURRENT after a successful deployment. If a stack cannot be deleted, the status will change to INOPERABLE.

After my initial deployment, I can click on Manage StackSet to add additional accounts, regions, or both, to create additional stacks:

Now Available
This new feature is available now and you can start using it today at no extra charge (you pay only for the AWS resources created on your behalf).

Jeff;

PS – If you create some useful templates and would like to share them with other AWS users, please send a pull request to our AWS Labs GitHub repo.

New – Next-Generation GPU-Powered EC2 Instances (G3)

I first wrote about the benefits of GPU-powered computing in 2013 when we launched the G2 instance type. Since that launch, AWS customers have used the G2 instances to deliver high performance graphics to mobile devices, TV sets, and desktops.

Today we are taking a step forward and launching the G3 instance type. Powered by NVIDIA Tesla M60 GPUs, these instances are available in three sizes (all VPC-only and EBS-only):

Model GPUs GPU Memory vCPUs Main Memory EBS Bandwidth
g3.4xlarge 1 8 GiB 16 122 GiB 3.5 Gbps
g3.8xlarge 2 16 GiB 32 244 GiB 7 Gbps
g3.16xlarge 4 32 GiB 64 488 GiB 14 Gbps

Each GPU supports 8 GiB of GPU memory, 2048 parallel processing cores, and a hardware encoder capable of supporting up to 10 H.265 (HEVC) 1080p30 streams and up to 18 H.264 1080p30 streams, making them a great fit for 3D rendering & visualization, virtual reality, video encoding, remote graphics workstation (NVIDIA GRID), and other server-side graphics workloads that need a massive amount of parallel processing power. The GPUs support OpenGL 4.5, DirectX 12.0, CUDA 8.0, and OpenCL 1.2. When you launch a G3 instance you have access to an NVIDIA GRID Virtual Workstation License and can make use of the NVIDIA GRID driver without purchasing a license on your own.

The instances use Intel Xeon E5-2686 v4 (Broadwell) processors running at 2.7 GHz. On the networking side, Enhanced Networking (via the Elastic Network Adapter) provides up to 20 Gbps of aggregate network bandwidth within a Placement Group, along with up to 14 Gbps of EBS bandwidth.

Our customers have told us that they are looking forward to visualizing large 3D seismic models, configuring cars in 3D, and providing students with the ability to run high-end 2D and 3D applications. For example, Calgary Scientific can take applications that are powered by the Unreal Engine and make them accessible on mobile devices and from within web pages, with collaborative viewing support. Visit their Demo Gallery to see PureWeb Reality in action:

You can launch these instances today in the US East (Ohio), US East (Northern Virginia), US West (Oregon), US West (Northern California), AWS GovCloud (US), and EU (Ireland) Regions as On-Demand, Reserved Instances, Spot Instances, and Dedicated Hosts, with more Regions coming soon.

Jeff;

AWS Online Tech Talks – July 2017

It’s unbelievable that 2017 has flown by so quickly, yet here we are already in the month of July. A little-known fact about the 7th month of the year is that its name, July, is in honor of the Roman general, Julius Cæsar. The Roman State named the month on his behalf since it the month of his birth. Prior to this designation, the month of July was called Quintilis.

I, also, thought it was interesting to learn that in the month of July, several countries celebrate their Independence Day. These countries are the United States, Bahamas, Kiribati, São Tomé, Príncipe, Liberia, Maldives, Algeria, Cape Verde, Venezuela, Burundi, Rwanda, and Somalia. Seems that the month of July was ripe for freedom and independence for all parts of the world.

Therefore, there is a lot to celebrate in the month of July and you are free to add the celebration of learning to your July festivities with AWS Online Tech Talks. This month’s sessions brings you great technical information about Serverless Compute, Security and Identity, as well as, Big Data and Artificial Intelligence running on Amazon Web Services.

July 2017 – Schedule

Below is the upcoming schedule for the live, online technical sessions scheduled for the month of July. Make sure to register ahead of time so you won’t miss out on these free talks conducted by AWS subject matter experts. All schedule times for the online tech talks are shown in the Pacific Time (PDT) time zone.

 

Webinars featured this month are:

 

Tuesday, July 11

Compute

9:00 AM – 9:40 AM: Managing WordPress on Amazon Lightsail

Big Data

10:30 AM – 11:10 AM: Building a Metadata Catalog for your Data Lakes using Amazon Elasticsearch Service

Databases

12:00 Noon – 12:40 PM: Convert and Migrate Your NoSQL Database or Data Warehouse to AWS

 

Wednesday, July 12

IoT

9:00 AM – 9:40 AM: Essential Capabilities of an IoT Cloud Platform

Storage

10:30 AM – 11:10 AM: Deep Dive on Amazon S3

Security & Identity

12:00 Noon –12:40 PM: Secure your Web Applications with AWS Web Application Firewall (WAF) and AWS Shield

 

Thursday, July 13

Enterprise & Hybrid

9:00 AM – 9:40 AM: Decouple and Scale Applications Using Amazon SQS and Amazon SNS

Mobile

10:30 AM – 11:10 AM: Driving User Engagement with Amazon Pinpoint

Security & Identity

12:00 Noon – 12:40 PM: Integrating Security Assessments Into Your DevOps Cycle with Amazon Inspector

 

Tuesday, July 25

Hands On Lab

8:30 AM – 10:00 AM: Hands-on Lab: Windows Workload

Enterprise & Hybrid

10:30 AM – 11:10 AM: SAP Solutions on AWS for Large Enterprises and Mission Critical Applications

Serverless

12:00 Noon – 1:00 PM: Security Best Practices for Serverless Applications

 

Wednesday, July 26

Hands On Lab

8:30 AM – 10:00 AM: Hands-on Lab: Introduction to Microsoft SQL Server in AWS

Artificial Intelligence

10:30 AM – 11:10 AM: Deep Learning for Data Scientists: Using Apache MXNet and R on AWS

 

Thursday, July 27

Big Data

9:00 AM – 9:40 AM: Embrace Streaming Analytics and Transform Your Business (AWS Webinar featuring Forrester’s Mike Gualtieri)

Compute

10:30 AM – 11:10 AM: Serverless Orchestration of AWS Step Functions

Artificial Intelligence

12:00 Noon – 12:40 PM: Exploring the Business Use Cases for Amazon Polly

 

The AWS Online Tech Talks series covers a broad range of topics at varying technical levels. These sessions feature live demonstrations & customer examples led by AWS engineers and Solution Architects. Check out the AWS YouTube channel for more on-demand webinars on AWS technologies.

Tara

New – API & CloudFormation Support for Amazon CloudWatch Dashboards

We launched CloudWatch Dashboards a couple of years ago. In the post that I wrote for the launch, I showed you how to interactively create a dashboard that displayed chosen CloudWatch metrics in graphical form. After the launch, we added additional features including a full screen mode, a dark theme, control over the range of the Y axis, simplified renaming, persistent storage, and new visualization options.

New API & CLI
While console support is wonderful for interactive use, many customers have asked us to support programmatic creation and manipulation of dashboards and the widgets within. They would like to dynamically build and maintain dashboards, adding and removing widgets as the corresponding AWS resources are created and destroyed. Other customers are interested in setting up and maintaining a consistent set of dashboards across two or more AWS accounts.

I am happy to announce that API, CLI, and AWS CloudFormation support for CloudWatch Dashboards is available now and that you can start using it today!

There are four new API functions (and equivalent CLI commands):

ListDashboards / aws cloudwatch list-dashboards – Fetch a list of all dashboards within an account, or a subset that share a common prefix.

GetDashboard / aws cloudwatch get-dashboard – Fetch details for a single dashboard.

PutDashboard / aws cloudwatch put-dashboard – Create a new dashboard or update an existing one.

DeleteDashboards / aws cloudwatch delete-dashboards – Delete one or more dashboards.

Dashboard Concepts
I want to show you how to use these functions and commands. Before I dive in, I should review a couple of important dashboard concepts and attributes.

Global – Dashboards are part of an AWS account, and are not associated with a specific AWS Region. Each account can have up to 500 dashboards.

Named – Each dashboard has a name that is unique within the AWS account. Names can be up to 255 characters long.

Grid Model – Each dashboard is composed of a grid of cells. The grid is 24 cells across and as tall as necessary. Each widget on the dashboard is positioned at a particular set of grid coordinates, and has a size that spans an integral number of grid cells.

Widgets (Visualizations) – Each widget can display text or a set of CloudWatch metrics. Text is specified using Markdown; metrics can be displayed as single values, line charts, or stacked area charts. Each dashboard can have up to 100 widgets. Widgets that display metrics can also be associated with a CloudWatch Alarm.

Dashboards have a JSON representation that you can now see and edit from within the console. Simply click on the Action menu and choose View/edit source:

Here’s the source for my dashboard:

You can use this JSON as a starting point for your own applications. As you can see, there’s an entry in the widgets array for each widget on the dashboard; each entry describes one widget, starting with its type, position, and size.

Creating a Dashboard Using the API
Let’s say I want to create a dashboard that has a widget for each of my EC2 instances in a particular region. I’ll use Python and the AWS SDK for Python, and start as follows (excuse the amateur nature of my code):

import boto3
import json

cw  = boto3.client("cloudwatch")
ec2 = boto3.client("ec2")

x, y          = [0, 0]
width, height = [3, 3]
max_width     = 12
widgets       = []

Then I simply iterate over the instances, creating a widget dictionary for each one, and appending it to the widgets array:

instances = ec2.describe_instances()
for r in instances['Reservations']:
    for i in r['Instances']:

        widget = {'type'      : 'metric',
                  'x'         : x,
                  'y'         : y,
                  'height'    : height,
                  'width'     : width,
                  'properties': {'view'    : 'timeSeries',
                                 'stacked' : False,
                                 'metrics' : [['AWS/EC2', 'NetworkIn', 'InstanceId', i['InstanceId']],
                                              ['.',       'NetworkOut', '.',         '.']
                                             ],
                                 'period'  : 300,
                                 'stat'    : 'Average',
                                 'region'  : 'us-east-1',
                                 'title'   : i['InstanceId']
                                }
                 }

        widgets.append(widget)

I update the position (x and y) within the loop, and form a grid (if I don’t specify positions, the widgets will be laid out left to right, top to bottom):

        x += width
        if (x + width > max_width):
            x = 0
            y += height

After I have processed all of the instances, I create a JSON version of the widget array:

body   = {'widgets' : widgets}
body_j = json.dumps(body)

And I create or update my dashboard:

cw.put_dashboard(DashboardName = "EC2_Networking",
                 DashboardBody = body_j)

I run the code, and get the following dashboard:

The CloudWatch team recommends that dashboards created programmatically include a text widget indicating that the dashboard was generated automatically, along with a link to the source code or CloudFormation template that did the work. This will discourage users from making manual, out-of-band changers to the dashboards.

As I mentioned earlier, each metric widget can also be associated with a CloudWatch Alarm. You can create the alarms programmatically or by using a CloudFormation template such as the Sample CPU Utilization Alarm. If you decide to do this, the alarm threshold will be displayed in the widget. To learn more about this, read Tara Walker’s recent post, Amazon CloudWatch Launches Alarms on Dashboards.

Going one step further, I could use CloudWatch Events and a Lamba Function to track the creation and deletion of certain resources and update a dashboard in concert with the changes. To learn how to do this, read Keeping CloudWatch Dashboards up to Date Using AWS Lambda.

Accessing a Dashboard Using the CLI
I can also access and manipulate my dashboards from the command line. For example, I can generate a simple list:

$ aws cloudwatch list-dashboards --output table
----------------------------------------------
|               ListDashboards               |
+--------------------------------------------+
||             DashboardEntries             ||
|+-----------------+----------------+-------+|
||  DashboardName  | LastModified   | Size  ||
|+-----------------+----------------+-------+|
||  Disk-Metrics   |  1496405221.0  |  316  ||
||  EC2_Networking |  1498090434.0  |  2830 ||
||  Main-Metrics   |  1498085173.0  |  234  ||
|+-----------------+----------------+-------+|

And I can get rid of the Disk-Metrics dashboard:

$ aws cloudwatch delete-dashboards --dashboard-names Disk-Metrics

I can also retrieve the JSON that defines a dashboard:

Creating a Dashboard Using CloudFormation
Dashboards can also be specified in CloudFormation templates. Here’s a simple template in YAML (the DashboardBody is still specified in JSON):

Resources:
  MyDashboard:
    Type: "AWS::CloudWatch::Dashboard"
    Properties:
      DashboardName: SampleDashboard
      DashboardBody: '{"widgets":[{"type":"text","x":0,"y":0,"width":6,"height":6,"properties":{"markdown":"Hi there from CloudFormation"}}]}'

I place the template in a file and then create a stack using the console or the CLI:

$ aws cloudformation create-stack --stack-name MyDashboard --template-body file://dash.yaml
{
    "StackId": "arn:aws:cloudformation:us-east-1:xxxxxxxxxxxx:stack/MyDashboard/a2a3fb20-5708-11e7-8ffd-500c21311262"
}

Here’s the dashboard:

Available Now
This feature is available now and you can start using it today. You can create 3 dashboards with up to 50 metrics per dashboard at no charge; additional dashboards are priced at $3 per month, as listed on the CloudWatch Pricing page. You can make up to 1 million calls to the new API functions each month at no charge; beyond that you pay $.01 for every 1,000 calls.

Jeff;

Catching Up On AWS Announcements from Early 2017

Even though we have published 123 posts so far this year, we simply don’t have the time to cover every significant AWS launch. Also, the newer services are often richer and take more space to describe, adding to our workload. This post (and others to follow each quarter) will outline some of the launches that we did not have time to address earlier.

So, here we go:

  • Migration Support for NoSQL Databases
  • Comments, Tagging, and Metadata APIs for WorkDocs.
  • Email and SMS Integration for Pinpoint
  • Usage Type Groups and Linked Account Access for AWS Budgets
  • EC2 Systems Manager Support for Hierarchies, Tagging, and CloudWatch Events

These features have already launched and you may already be using them!

Migration Support for NoSQL Databases
With this launch, AWS Database Migration Service can migrate relational databases, NoSQL databases, and data warehouses. The launch adds support for MongoDB databases as a migration source and Amazon DynamoDB tables as a migration target. To get started, create a replication instance and database endpoints for MongoDB and DynamoDB:

Read MongoDB as a Migration Source and DynamoDB as a Migration Target for more information.

Comments, Tagging, and Metadata APIs for WorkDocs
This addition to the Amazon WorkDocs Administrative SDK provides APIs for creating and accessing metadata, tags, and comments:

MetadataCreateCustomMetadata, DeleteCustomMetadata.

TagsCreateLabels, DeleteLabels.

CommentsCreateComment, DeleteComment, DescribeComments.

The SDK is available for Java, Python, Go, JavaScript, .NET, PHP, and Ruby. It handles signing of API requests using Sigv4, and is integrated with IAM (roles and permissions), SNS (real-time notifications), and CloudTrail (monitoring).

Email and SMS Integration for Pinpoint
In addition to the existing Mobile Push Notifications, Amazon Pinpoint can now drive user engagement through email and SMS notifications. In order to use this feature you must first enable the desired channel or channels:

To learn more, read about Amazon Pinpoint Channels.

Usage Type Groups and Linked Account Access for AWS Budgets
AWS Budgets let you set cost and usage budgets and receive notification if they are breached (read Managing Your Costs with Budgets and AWS Budgets Update – Track Cloud Costs and Usage).

In order to make AWS Budgets even more useful, we added support for linked accounts and a new usage type filtering option. Organizations that make use of Consolidated Billing to consolidate payment for multiple AWS accounts will benefit from the support for linked accounts. The member accounts can now access their own budgets, while the payer account remains responsible for payment.

The usage type and usage type group filtering dimensions allow you to track your costs and usage from an aggregate level all the way down to the most basic unit of metering. For example, you can create a budget to track all EC2 usage (EC2-Running Hours):

Or a specific usage type, in this case three different sizes of T2 instances:

EC2 Systems Manager Support for Hierarchies, Tagging, and CloudWatch Events
This management service helps you to automatically collect software inventory, apply OS patches, create system images, and configure both Linux and Windows operating systems.

The Parameter Store (one of the service’s most popular features) stores configuration data such as database access strings and passwords in encrypted form. It is accessible from the CLI, APIs, and SDKs; this allows AWS Lambda functions and code running inside of Amazon ECS containers to access the same parameters.

We added support for storage of parameters in hierarchical form, giving you the ability to group them by organization, application, and so forth. You can also create parallel sets of parameters for use in development, testing, and production environments. To create a hierarchy of parameters, use names that include one or more “/” characters:

We also added support for tagging. You can query parameters based on tags and you can add IAM permissions to parameters via tags.

Finally, the Parameter Store is now a source of CloudWatch Events. You can now track changes to your parameters, perhaps making sure that they are not inadvertently changed in a way that could break an existing application:

Keeping Up
In addition to reading this blog on a regular basis, you can also follow me and AWS Cloud on Twitter. You can also check out the AWS What’s New and subscribe to the RSS Feed.

Jeff;