Artificial Intelligence
Accelerate large-scale AI training with Amazon SageMaker HyperPod training operator
In this post, we demonstrate how to deploy and manage machine learning training workloads using the Amazon SageMaker HyperPod training operator, which enhances training resilience for Kubernetes workloads through pinpoint recovery and customizable monitoring capabilities. The Amazon SageMaker HyperPod training operator helps accelerate generative AI model development by efficiently managing distributed training across large GPU clusters, offering benefits like centralized training process monitoring, granular process recovery, and hanging job detection that can reduce recovery times from tens of minutes to seconds.
Scale ML workflows with Amazon SageMaker Studio and Amazon SageMaker HyperPod
The integration of Amazon SageMaker Studio and Amazon SageMaker HyperPod offers a streamlined solution that provides data scientists and ML engineers with a comprehensive environment that supports the entire ML lifecycle, from development to deployment at scale. In this post, we walk you through the process of scaling your ML workloads using SageMaker Studio and SageMaker HyperPod.

