Artificial Intelligence

Michael Roth

Author: Michael Roth

MLOps pipeline scribble

Build an end-to-end MLOps pipeline for visual quality inspection at the edge – Part 1

A successful deployment of a machine learning (ML) model in a production environment heavily relies on an end-to-end ML pipeline. Although developing such a pipeline can be challenging, it becomes even more complex when dealing with an edge ML use case. Machine learning at the edge is a concept that brings the capability of running […]

Metal tag with scratches

Build an end-to-end MLOps pipeline for visual quality inspection at the edge – Part 2

In Part 1 of this series, we drafted an architecture for an end-to-end MLOps pipeline for a visual quality inspection use case at the edge. It is architected to automate the entire machine learning (ML) process, from data labeling to model training and deployment at the edge. The focus on managed and serverless services reduces […]

Architecture diagram

Build an end-to-end MLOps pipeline for visual quality inspection at the edge – Part 3

This is Part 3 of our series where we design and implement an MLOps pipeline for visual quality inspection at the edge. In this post, we focus on how to automate the edge deployment part of the end-to-end MLOps pipeline. We show you how to use AWS IoT Greengrass to manage model inference at the […]