AWS Machine Learning Blog

Tag: Amazon SageMaker Autopilot

Beyond forecasting: The delicate balance of serving customers and growing your business

Companies use time series forecasting to make core planning decisions that help them navigate through uncertain futures. This post is meant to address supply chain stakeholders, who share a common need of determining how many finished goods are needed over a mixed variety of planning time horizons. In addition to planning how many units of […]

Optimize data preparation with new features in Amazon SageMaker Data Wrangler

Data preparation is a critical step in any data-driven project, and having the right tools can greatly enhance operational efficiency. Amazon SageMaker Data Wrangler reduces the time it takes to aggregate and prepare tabular and image data for machine learning (ML) from weeks to minutes. With SageMaker Data Wrangler, you can simplify the process of […]

create autopilot experiment

Make batch predictions with Amazon SageMaker Autopilot

Amazon SageMaker Autopilot is an automated machine learning (AutoML) solution that performs all the tasks you need to complete an end-to-end machine learning (ML) workflow. It explores and prepares your data, applies different algorithms to generate a model, and transparently provides model insights and explainability reports to help you interpret the results. Autopilot can also […]

Run AutoML experiments with large parquet datasets using Amazon SageMaker Autopilot

Starting today, you can use Amazon SageMaker Autopilot to tackle regression and classification tasks on large datasets up to 100 GB. Additionally, you can now provide your datasets in either CSV or Apache Parquet content types. Businesses are generating more data than ever. A corresponding demand is growing for generating insights from these large datasets […]