AWS Database Blog
Automating Amazon RDS and Amazon Aurora recommendations via notification with AWS Lambda, Amazon EventBridge, and Amazon SES
In this post, we walk through a solution that automates the notification of Amazon RDS and Aurora recommendations through email using AWS Lambda, Amazon EventBridge and Amazon Simple Email Service (Amazon SES).
Accelerate database migration using virtual target mode in AWS DMS Schema Conversion
AWS recently announced virtual target mode in AWS Database Migration Service (AWS DMS) Schema Conversion. This feature helps you start migration planning without provisioning target databases. In this post, we show you how to get started using virtual target mode in AWS DMS Schema Conversion.
Amazon Timestream for InfluxDB: Expanding managed open source time series databases for data-driven insights and real-time decision making
In this post we are announcing the strengthening of the partnership between AWS and InfluxData as Timestream adopts InfluxDB as the main purpose-built time series database.
How Global Payments Inc. improved their tail latency using request hedging with Amazon DynamoDB
Amazon DynamoDB delivers consistent single-digit millisecond performance at any scale, making it ideal for mission-critical workloads. However, as with any distributed system, a small percentage of requests may experience significantly longer response times than the average. This phenomenon, known as tail latency, refers to these slower outliers that can be seen by looking at metrics such as the 99th or 99.9th percentile of response times. In this post, we explore how Global Payments Inc. (GPN) reduced their tail latency by 30% using request hedging. We review the technical details and challenges they faced, providing insights into how you can optimize your own latency-sensitive applications. In a next post we’ll share detailed implementation examples.
4.7 times better write query price-performance with AWS Graviton4 R8g instances using Amazon Neptune v1.4.5
Amazon Neptune version 1.4.5 introduces engine improvements and support for AWS Graviton-based r8g instances. In this post, we show you how these updates can improve your graph database performance and reduce costs. We walk you through the benchmark results for Gremlin and openCypher comparing Neptune v1.4.5 on r8g instances against previous versions. You’ll see performance improvements of up to 4.7x for write throughput and 3.7x for read throughput, along with the cost implications.
Gracefully handle failed AWS Lambda events from Amazon DynamoDB Streams
In this post, we show how to capture and retain failed stream events for later analysis or replay using Amazon S3 as a durable destination. We compare this approach with the traditional Amazon SQS dead-letter queue (DLQ) pattern, and explain when and why Amazon S3 is a preferred option.
How to optimize Amazon RDS and Amazon Aurora database costs/performance with AWS Compute Optimizer
In this post, we dive deeper into database optimization for your Amazon Relational Database Service (Amazon RDS), exploring how you can use AWS Compute Optimizer recommendations to make cost-aware resource configuration decisions for your MySQL and PostgreSQL databases.
Vibe code with AWS databases using Vercel v0
In this post, we explore how you can use Vercel’s v0 generative UI to build applications with a modern UI for AWS purpose-built databases such as Amazon Aurora, Amazon DynamoDB, Amazon Neptune, and Amazon ElastiCache.
Beyond Correlation: Finding Root-Causes using a network digital twin graph and agentic AI
When your network fails, finding the root cause usually takes hours of investigations, going through correlated alarms that often lead to symptoms rather than the actual problem. Root-cause analysis (RCA) systems are often built on hardcoded rules, static thresholds, and pre-defined patterns that work great until they don’t. Whether you’re troubleshooting network-level outages or service-level degradations, those rigid rule sets can’t adapt to cascading failures and complex interdependencies. In this post, we show you our AWS solution architecture that features a network digital twin using graphs and Agentic AI. We also share four runbook design patterns for Agentic AI-powered graph-based RCA on AWS. Finally, we show how DOCOMO provides real-world validation from their commercial networks of our first runbook design pattern, showing drastic MTTD improvement with 15s for failure isolation in transport and Radio Access Networks.
Demystifying the AWS advanced JDBC wrapper plugins
In 2023, AWS introduced the AWS advanced JDBC wrapper, enhancing the capabilities of existing JDBC drivers with additional functionality. This wrapper enables support of AWS and Amazon Aurora functions on top of an existing PostgreSQL, MySQL, or MariaDB JDBC driver of your choice. This wrapper supports a variety of plugins, including the Aurora connection tracker plugin, the limitless connection plugin, and the read-write splitting plugin. In this post, we discuss the benefits, use cases, and implementation details for two popular AWS Advanced JDBC Wrapper Driver plugins: the Aurora Initial Connection Strategy and Failover v2 plugins.