AWS News Blog
Category: Launch
Announcing Amazon CodeCatalyst, a Unified Software Development Service (Preview)
Today, we announced the preview release of Amazon CodeCatalyst. A unified software development and delivery service, Amazon CodeCatalyst enables software development teams to quickly and easily plan, develop, collaborate on, build, and deliver applications on AWS, reducing friction throughout the development lifecycle. In my time as a developer the biggest excitement—besides shipping software to users—was […]
Step Functions Distributed Map – A Serverless Solution for Large-Scale Parallel Data Processing
I am excited to announce the availability of a distributed map for AWS Step Functions. This flow extends support for orchestrating large-scale parallel workloads such as the on-demand processing of semi-structured data. Step Function’s map state executes the same processing steps for multiple entries in a dataset. The existing map state is limited to 40 […]
AWS Marketplace Vendor Insights – Simplify Third-Party Software Risk Assessments
Update 8 February 2023: I edited this blog post to remove the “preview” messaging for AWS Artifact third-party reports. —- AWS Marketplace Vendor Insights is a new capability of AWS Marketplace. It simplifies third-party software risk assessments when procuring solutions from the AWS Marketplace. It helps you to ensure that the third-party software continuously meets […]
New for Amazon SageMaker – Perform Shadow Tests to Compare Inference Performance Between ML Model Variants
As you move your machine learning (ML) workloads into production, you need to continuously monitor your deployed models and iterate when you observe a deviation in your model performance. When you build a new model, you typically start validating the model offline using historical inference request data. But this data sometimes fails to account for […]
New – Share ML Models and Notebooks More Easily Within Your Organization with Amazon SageMaker JumpStart
Amazon SageMaker JumpStart is a machine learning (ML) hub that can help you accelerate your ML journey. SageMaker JumpStart gives you access to built-in algorithms with pre-trained models from popular model hubs, pre-trained foundation models to help you perform tasks such as article summarization and image generation, and end-to-end solutions to solve common use cases. […]
New for Amazon Redshift – Simplify Data Ingestion and Make Your Data Warehouse More Secure and Reliable
When we talk with customers, we hear that they want to be able to harness insights from data in order to make timely, impactful, and actionable business decisions. A common pattern with data-driven organizations is that they have many different data sources they need to ingest into their analytics systems. This requires them to build […]
Announcing Additional Data Connectors for Amazon AppFlow
Gathering insights from data is a more effective process if that data isn’t fragmented across multiple systems and data stores, whether on premises or in the cloud. Amazon AppFlow provides bidirectional data integration between on-premises systems and applications, SaaS applications, and AWS services. It helps customers break down data silos using a low- or no-code, […]
New ML Governance Tools for Amazon SageMaker – Simplify Access Control and Enhance Transparency Over Your ML Projects
As companies increasingly adopt machine learning (ML) for their business applications, they are looking for ways to improve governance of their ML projects with simplified access control and enhanced visibility across the ML lifecycle. A common challenge in that effort is managing the right set of user permissions across different groups and ML activities. For […]





