AWS Database Blog
Category: Amazon Machine Learning
How LeadSquared accelerated chatbot deployments with generative AI using Amazon Bedrock and Amazon Aurora PostgreSQL
LeadSquared is a new-age software as a service (SaaS) customer relationship management (CRM) platform that provides end-to-end sales, marketing, and onboarding solutions. Tailored for sectors like BFSI (banking, financial services, and insurance), healthcare, education, real estate, and more, LeadSquared provides a personalized approach for businesses of every scale. LeadSquared Service CRM goes beyond basic ticketing, […]
A generative AI use case using Amazon RDS for SQL Server as a vector data store
Generative artificial intelligence (AI) has reached a turning point, capturing everyone’s imaginations. Integrating generative capabilities into customer-facing services and solutions has become critical. Current generative AI offerings are the culmination of a gradual evolution from machine learning and deep learning models. The leap from deep learning to generative AI is enabled by foundation models. Amazon […]
Use LangChain and vector search on Amazon DocumentDB to build a generative AI chatbot
Amazon DocumentDB (with MongoDB compatibility) offers benefits to customers building modern applications across multiple domains, including healthcare, gaming, and finance. As a fully managed document database, it can improve user experiences through flexibility, scalability, high performance, and advanced functionality. Enterprises that use the JSON data model supported by Amazon DocumentDB can achieve faster application development […]
Build generative AI applications with Amazon Aurora and Amazon Bedrock Knowledge Bases
Amazon Bedrock is the easiest way to build and scale generative AI applications with foundational models (FMs). FMs are trained on vast quantities of data, allowing them to be used to answer questions on a variety of subjects. However, if you want to use an FM to answer questions about your private data that you […]
Diagram-as-code using generative AI to build a data model for Amazon Neptune
To be successful with a graph database—such as Amazon Neptune, a managed graph database service—you need a graph data model that captures the data you need and can answer your questions efficiently. Building that model is an iterative process. The earliest stage of the process, in which you are merely getting initial elements on paper […]
Accelerating your application modernization with Amazon Aurora Machine Learning
Organizations that store and process data in relational databases are making the shift to the cloud. As part of this shift, they often wish to modernize their application architectures and add new cloud-based capabilities. Chief among these are machine learning (ML)-based predictions such as product recommendations and fraud detection. The rich customer data available in […]