AWS Database Blog

Category: Amazon Neptune

Auto scale your Amazon Neptune database to meet workload demands

Amazon Neptune is a fast, reliable, fully managed graph database service that makes it easy to build and run applications with highly connected datasets. You can use Neptune to build fraud detection, entity resolution, product recommendation, and knowledge graph applications. Built on open standards, Neptune enables developers to use three popular open-source graph query languages […]

Read More
Architecture Diagram

Build interactive graph data analytics and visualizations using Amazon Neptune, Amazon Athena Federated Query, and Amazon QuickSight

Customers have asked for a way to interact with graph datasets in Amazon Neptune using business intelligence (BI) tools such as Amazon QuickSight. Although some BI tools offer generic HTTP connectors that allow you to define a set of REST API calls to extract data from REST endpoints, you have to predefine either Gremlin or […]

Read More

Build purpose-built database AMIs using Amazon EC2 Image Builder

Managing virtual machine images that you standardize through configuration, consistent security patching, and hardening (also called “golden images”) is a time-consuming task. System administrators and database administrators responsible for these tasks have to define the characteristics of these images (such as which software to pre-install, which versions to use, and which security configurations to apply). […]

Read More

Building a data discovery solution with Amundsen and Amazon Neptune

September 8, 2021: Amazon Elasticsearch Service has been renamed to Amazon OpenSearch Service. See details. In this post, we discuss the need for a metadata and data lineage tool and the problems it solves, how to rapidly deploy it in the language you prefer using the AWS Cloud Development Kit (AWS CDK), as well as […]

Read More

Introducing Graph Store Protocol support for Amazon Neptune

Amazon Neptune is a fast, reliable, fully managed graph database service that makes it easy to build and run applications that work with highly connected datasets. Neptune’s database engine is optimized for storing billions of relationships and querying with millisecond latency. The W3C’s Resource Description Framework (RDF) model and the popular Labeled Property Graph model […]

Read More

Easier and faster graph machine learning with Amazon Neptune ML

Amazon Neptune ML provides a simple workflow for training machine learning (ML) models for graph data. With version 1.0.5.0, Neptune ML delivers additional enhancements to all the steps of this workflow to reduce cost, increase speed, and offer a more flexible modeling experience. Starting with data export and data processing, Neptune ML now provides additional […]

Read More

Get predictions for evolving graph data faster with Amazon Neptune ML

As an application developer building graph applications with Amazon Neptune, your graph data may be evolving on a regular basis, with new nodes and or new relationships between nodes being added to the graph to reflect the latest changes in your underlying business data. Amazon Neptune ML now supports incremental model predictions on graph data […]

Read More

Discover more insights in your graphs with new features from Amazon Neptune ML

Amazon Neptune ML is a feature of Amazon Neptune that brings the power of the state-of-the-art graph neural network (GNN) models to all graph developers. You can use Neptune ML for tasks like node classification, node regression, and link prediction. This allows you to train GNN models powered by the Deep Graph Library (DGL) to […]

Read More

Announcing openCypher for Amazon Neptune: Building better graph applications with openCypher and Gremlin together

Today, we announced that openCypher for Amazon Neptune is available in lab mode. Developers can now use openCypher and Apache TinkerPop Gremlin to build or migrate property graph applications. Neptune’s purpose-built graph engine now supports three open graph query languages: Apache TinkerPop Gremlin, openCypher, and the World Wide Web Consortium’s (W3C) SPARQL 1.1, giving developers […]

Read More

Learn how Dream11, the World’s largest fantasy sports platform, scale their social network with Amazon Neptune and Amazon ElastiCache

This is a guest post co-written by Bharat Kumar, Graph Databases Lead at Dream11. Dream11, the flagship brand of Dream Sports, is the world’s largest fantasy sports platform, with more than 100 million users. We have infused the latest technologies of analytics, machine learning, social networks, and media technologies to enhance user experience. Dream11 is […]

Read More