亚马逊AWS官方博客
Category: Amazon Machine Learning
机器学习多步时间序列预测解决方案
AWS ProServe GCR 利用机器学习进行多步时间序列预测解决方案。
Wellforce 宣布将卫生系统的数字医疗保健生态系统迁移到 AWS
Wellforce 正在迁移其整个数字医疗保健生态系统,以在 Amazon Web Services (AWS) 上创建一个数字平台。该平台由 Epic 的基础设施以及 300 多个支持医疗保健和业务应用程序的复杂集成组成,一旦上线,Wellforce 有望成为在云上运行其整个 Epic 基础设施的最大组织。
通过 Amazon SageMaker 在慕尼黑白血病实验室进行机器学习白血病诊断
在这篇文章中,我们将详细介绍我们在使用 Amazon SageMaker 创建强大的 ML 模型方面的合作,该模型仅使用下一代测序(NGS)数据就可以检测 30 种不同的白血病亚型。
推荐系统系列之推荐系统召回阶段的深入探讨
在当今信息化高速发展的时代,推荐系统是一个热门的话题和技术领域,一些云厂商也提供了推荐系统的SaaS服务比如亚马逊云科技的Amazon Personalize来解决客户从无到有迅速构建推荐系统的痛点和难点。在我们的日常生活中,推荐系统随处可见,我根据这几年参与的推荐系统和计算广告项目总结了一些实践经验并以推荐系统系列文章的形式分享给大家,希望大家看后对推荐系统有更全新更深刻的理解。
使用 Amazon SageMaker Clarify 解释德甲赛况 xGoals
最激动人心的 AWS re:Invent 2020 公告之一是新增一项 Amazon SageMaker 功能 […]
通过个性化在线体育内容提高参与度
这是 Pulselive 的 Mark Wood 的客座博文。用他们自己的话说,“总部位于英国的 Pulselive 是体育界一些知名品牌引以为豪的数字合作伙伴。”
十分钟轻松使用 Scala 在 Apache Spark 部署深度学习模型
深度学习在大数据领域上的应用日趋广泛,可是在Java/Scala上的部署方案却屈指可数。亚马逊开源项目团队另辟蹊径,利用DJL帮助用户部署深度学习应用在Spark上。只需10分钟,你就可以轻松部署TensorFlow,PyTorch,以及MXNet的模型在大数据生产环境中。
基于Amazon SageMaker完成ERNIE机器学习任务(一)—— 通过自带容器方法实现自定义算法的模型预训练
在近日全球规模最大的语义评测比赛 SemEval 2020中,语义理解框架ERNIE斩获了包括视觉媒体的关键文本片段挖掘、多语攻击性语言检测和混合语种的情感分析等在内的5项世界冠军。它所提出的知识增强语义表示模型,以及2.0版本构建的持续学习语义理解框架,在中英文等多个任务上超越业界最好模型。尤其在多项中文NLP任务中,ERNIE的结果都能与 BERT 持平或有所提升。
使用 Amazon Elastic Inference 降低 Amazon SageMaker PyTorch 模型的机器学习推理成本
PyTorch 是一个常见的深度学习框架,它使用动态计算图形。借助它,您可以使用命令语言和常用的 Python 代码轻松开发深度学习模型。推理是使用训练模型进行预测的过程。对于使用 PyTorch 等框架的深度学习应用程序,推理成本占计算成本的 90%。由于深度学习模型需要不同数量的 GPU、CPU 和内存资源,为推理选择适当的实例有难度。在一个独立的 GPU 实例上对其中一个资源进行优化通常会导致其他资源利用不足。因此,您可能要为未使用的资源付费。
使用 Amazon SageMaker 加速自定义 AI 医疗影像算法构建
随着 AI 在医疗领域的快速运用与推广,越来越多医疗用户在AWS寻求弹性,安全,高效,高可用的解决方案。此外,基于医疗的行业属性,医疗用户要求在云上的机器学习流程一方面与 AWS 其它产品如监控,安全,审计等服务集成,以符合 HIPAA 要求;另一方面能贴合本地业务环境无缝集成,灵活部署。随着益体康,晶态科技等优秀的医疗+AI用户通过在 AWS 上快速搭建服务平台,极大缩短了产品从构想、开发,再到部署的时间,越来越多的用户发现 AWS 技术上的优势可以让医疗 AI 用户的模型训练变得更为轻松。这篇blog旨在以开源的医疗影像数据与语义分割算法为例,探索 Amazon SageMaker 加速自定义医疗 AI 影像分割算法构建的业务场景与优势。





